首页> 外文期刊>Physical chemistry chemical physics: PCCP >Reversible potentials for steps in methanol and formic acid oxidation to CO2; adsorption energies of intermediates on the ideal electrocatalyst for methanol oxidation and CO2 reduction
【24h】

Reversible potentials for steps in methanol and formic acid oxidation to CO2; adsorption energies of intermediates on the ideal electrocatalyst for methanol oxidation and CO2 reduction

机译:甲醇和甲酸氧化在二氧化碳中的可逆电势; 甲醇氧化和CO2理想电催化剂中间体的吸附能量

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Quantum chemical theory is used to identify the reasons for platinum's limitations as an electrocatalyst for oxidizing methanol at fuel cell anodes. The linear Gibbs energy relation (LGER) method is employed to predict reversible potentials for reaction steps for intermediates on the electrode surface. In this procedure, standard reversible potentials are calculated for the reactions in bulk solution phase and then they are perturbed using calculated adsorption bond strengths to the electrode surface, yielding the equilibrium potentials for each electron transfer step for adsorbed intermediates. Adsorption properties of ideal electrocatalysts for the methanol oxidation are found by imposing the condition that the reversible potential of each electron transfer step equals that for the overall reaction. The adsorption bond strengths that provide the ideal properties also apply to formic acid oxidation and carbon dioxide reduction. It is instructive to think of the ideal electrocatalyst as a lens that focusses the reversible potentials for the n individual electron transfer steps to the reversible potential for the n-electron process. It is found that the ideal catalyst will adsorb many intermediates, including HOOC, CO, OCH, HOC, HOCH, HOCH2, and OCH3 more weakly than platinum, and OOCH and OH more strongly. For example, for one possible pathway it is necessary to weaken adsorption bond strengths for HOCH2, HOCH, OCH, HOOC by about 0.5 eV, weaken adsorption CO by about 1.1 eV and strengthen OH adsorption by about 0.6 eV. These results imply a need for developing new multi-component catalysts.
机译:量子化学理论用于识别铂金作为燃料电池阳极氧化甲醇的电催化剂的限制的原因。采用线性GIBBS能量关系(LGER)方法来预测用于电极表面上中间体的反应步骤的可逆电位。在该方法中,针对本体溶液相的反应计算标准可逆电势,然后使用对电极表面的计算的吸附键强度进行扰动,从而产生用于吸附中间体的每个电子转移步骤的平衡电位。通过施加每个电子转移步骤的可逆电位等于整体反应的条件,发现了甲醇氧化理想电催化剂的吸附性能。提供理想性质的吸附粘合强度也适用于甲酸氧化和二氧化碳还原。将理想的电催化剂思考作为透镜是指示于N个单独电子转移步骤的可逆电位对N型电子过程的可逆电位的透镜是有意义的。结果发现,理想的催化剂将吸附许多中间体,包括HOOC,CO,OCH,HOC,HOCH,HOCH2和OCH3比铂更弱,ooch和ooch更强烈。例如,对于一种可能的途径,必须将HOCH2,HOCH,OCH,HOOC的吸附粘合强度削弱约0.5eV,使吸附CO减弱约1.1eV并加强OH吸附约0.6eV。这些结果意味着需要开发新的多组分催化剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号