首页> 外文期刊>Physical chemistry chemical physics: PCCP >Predicting structural and energetic changes in Met-aromatic motifs on methionine oxidation to the sulfoxide and sulfone
【24h】

Predicting structural and energetic changes in Met-aromatic motifs on methionine oxidation to the sulfoxide and sulfone

机译:预测甲硫氨酸氧化与亚砜和砜的结构和能量变化

获取原文
获取原文并翻译 | 示例
           

摘要

Noncovalent interactions between Met and aromatic residues define a common Met-aromatic motif in proteins. Met oxidation to MetO(n) (n = 1 sulfoxide, n = 2 sulfone) alters protein stability and function. To predict the chemical and physical consequences of such oxidations, we modeled the chemistry and redox properties of MetO(n)-aromatic complexes in depth for comparison with our Met-aromatic models (E. A. Orabi and A. M. English, J. Phys. Chem. B, 2018, 122, 3760). We describe here ab initio quantum mechanical calculations at the MP2(full)/6-311++G(d,p) level of theory on complexes of MetO(n) (n = 1, 2; modeled by Me2SO and Me2SO2) with models of the side-chains of Phe (benzene, toluene), Trp (indole, 3-methylindole), Tyr (phenol, 4-methylphenol) and His (imidazole, 4-methylimidazole). Binding energies of the global minimum conformers (-3.4 to -11.9 kcal mol(-1)) indicate that the gas-phase Me2SOn-aromatics are 40-115% more stable than the Me2S-aromatics. Binding of S between the edge and face of the aromatic ring is favored in most complexes as it accommodates both robust sigma- and -type H-bonding. Interactions involving the sigma-holes on the S atoms (sigma-hole(ar) and sigma-holeN(ar)/O-ar), as well as S interactions in the sulfoxides, contribute to complex stability. Complexation modulates the ionization potential (IP) of the interacting fragments with the binding geometry dictating the center oxidized in the Me2SO-aromatics whereas the aromatic is oxidized in the Me2SO2 complexes because of the sulfone's high IP. Potentials of mean force reveal binding free energies of -0.2 to -0.7 kcal mol(-1) in bulk water, which indicates that the Me2SOn-aromatics are up to 80% less stable than the corresponding aqueous Me2S-aromatics. Molecular dynamics simulations predict that Me2SOn preferentially interacts with the ring face and expose the dominance of - vs. sigma-type H-bonding in the hydrated complexes as found for the Me2S-aromatics. Our modeling will inform how Met/MetO(n)-aromatic motifs are determinants of redox-induced changes in proteins.
机译:达到的符合与芳族残基之间的非共价相互作用在蛋白质中定义了常见的甲状腺芳香基序。达到氧化物至莫沸石(N = 1硫氧化物,N = 2砜)改变蛋白质稳定性和功能。为了预测这种氧化的化学和身体后果,我们深入地模拟了Meto(n) - aromatic络合物的化学和氧化还原性能,以便与我们的芳香模型进行比较(EA orabi和Am英语,J. phys。化学。B ,2018,122,3760)。我们在此处描述了在MP2(全部)/ 6-311 ++ g(d,p)理论上的AB Initio量子机械计算,核心(n)的复合物(n = 1,2;由me2so和me2so2建模) PHE(苯,甲苯),TRP(吲哚,3-甲基吲哚),TYR(苯酚,4-甲基苯酚)和他(咪唑,4-甲基咪唑)的侧链的模型。全局最小塑造剂的结合能量(-3.4至-11.9 kcal(-1))表明气相Me2son-aromatics比Me2S-芳烃更稳定40-115%。在芳环的边缘和面之间的结合是在大多数复合物中青睐,因为它适应稳健的Sigma和-Type H键合。涉及S原子上的Sigma孔(Sigma-孔(Ar)和Sigma-Holen(Ar)/ O-Ar)的相互作用以及亚砜中的相互作用有助于复杂的稳定性。络合为与在ME2SO-芳烃中氧化的中心的结合几何形状调节相互作用片段的电离电位(IP),而由于砜的高IP,芳族在ME2SO2配合物中氧化。平均力的电位显示在大量水中的与-0.2至-0.7kcal(-1)的结合能量显示,这表明Me2Son-芳烃高达80%稳定性比相应的ME2S-芳烃较低。分子动力学模拟预测ME2SON优先与环面相互作用,并暴露在ME2S-芳烃的水合络合物中的与Sigma型H键合的优势。我们的建模将为MET / METO(N) - 芳族基质是如何提供氧化还原诱导的蛋白质变化的决定因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号