...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Diffusion mechanism of Na ion-polaron complex in potential cathode materials NaVOPO4 and VOPO4 for rechargeable sodium-ion batteries
【24h】

Diffusion mechanism of Na ion-polaron complex in potential cathode materials NaVOPO4 and VOPO4 for rechargeable sodium-ion batteries

机译:Na离子 - 极性络合物在潜在的阴极材料中Navopo4和Ropo4进行可充电钠离子电池的扩散机制

获取原文
获取原文并翻译 | 示例
           

摘要

Using the density functional method, we investigated the crystal and electronic structures and the electrochemical properties of NaxVOPO4 (x = 0, 1) and explored the diffusion mechanism of Na ions in these materials. The van der Waals interaction was also taken into account to include the non-local electron correlation in the calculation of structural parameters and voltage. The diffusion of Na ions is treated as a process of the Na vacancy-positive small polaron complex in NaVOPO4 and the Na ion-negative small polaron complex in VOPO4, respectively. During the charging (discharging) process, the removal (insertion) of a Na ion would result in the formation of a positive (negative) small polaron at one of the two first nearest vanadium sites to the Na vacancy. Three elementary diffusion processes, including the single, crossing and parallel diffusion processes, are explored. It is found that the [010] direction is preferable for Na ion diffusion in both the charging and discharging processes. The influence of small polaron migration on Na ion diffusion in the charging state is negligible, whereas such effect is considerably strong in the discharging process. Moreover, while three elementary diffusion processes in NaVOPO4 require the same energy, the parallel diffusion process in VOPO4 is not preferred. The diffusion of Na vacancy accompanied by a positive polaron in the full charging process requires an activation energy of 395 meV, while the diffusion of Na ion accompanied by a negative polaron in the discharging state, VOPO4, has a higher activation energy of 627 meV. With a voltage and activation barrier similar to that of the olivine phosphate LiFePO4, these sodium-based materials are expected to be promising cathode materials for sodium ion batteries.
机译:使用密度函数方法,我们研究了晶体和电子结构和NaxVOPO4的电化学性能(X = 0,1),探讨在这些材料中的Na离子的扩散机制。范德华相互作用面包车也考虑到包括在结构参数和电压的计算非本地电子相关。 Na离子的扩散被视为NaVOPO4分别中的Na空位阳性小极化子复杂,VOPO 4 Na离子阴性小极化子复合物,的处理。在充电(放电)过程中,Na离子的去除(插入)将导致在两个第一最近钒位点中的Na空位中的一个形成的正(负)小极化子的。三个基本的扩散过程,包括单一的,交叉和平行扩散过程,进行了探索。据发现,[010]方向,优选为在充电和放电过程既Na离子扩散。在充电状态Na离子扩散小极化子迁移的影响是可以忽略的,而这样的效果是在放电过程中相当强。此外,虽然在NaVOPO4三个基本扩散过程所需要的相同的能量,在VOPO 4并行扩散过程不是优选的。伴随着在全充电过程的正极化的Na空位的扩散需要395兆电子伏的激活能量,而Na离子的扩散伴随着放电状态,VOPO 4负极化子,具有627兆电子伏的较高的活化能。具有类似于橄榄石磷酸盐LiFePO 4的电压和活化障碍,这些基于钠的材料可望被希望用于钠离子电池的阴极材料。

著录项

  • 来源
  • 作者单位

    Natl Univ Hanoi Vietnam Japan Univ NanoTechnol Program Luu Huu Phuoc St My Dinh 1 Ward Hanoi Vietnam;

    Natl Univ Hanoi Vietnam Japan Univ NanoTechnol Program Luu Huu Phuoc St My Dinh 1 Ward Hanoi Vietnam;

    Osaka Univ Grad Sch Engn Dept Precis Sci &

    Appl Phys 2-1 Yamadaoka Suita Osaka 5650871 Japan;

    Natl Univ Hanoi Vietnam Japan Univ NanoTechnol Program Luu Huu Phuoc St My Dinh 1 Ward Hanoi Vietnam;

    Natl Univ Hanoi Vietnam Japan Univ NanoTechnol Program Luu Huu Phuoc St My Dinh 1 Ward Hanoi Vietnam;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号