首页> 外文期刊>Physical chemistry chemical physics: PCCP >Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure
【24h】

Interlayer coupling and electric field tunable electronic properties and Schottky barrier in a graphene/bilayer-GaSe van der Waals heterostructure

机译:石墨烯/双层Gase van der Sovals中的层间耦合和电场可调电子特性和肖特基障碍

获取原文
获取原文并翻译 | 示例
           

摘要

In this work, using density functional theory we investigated systematically the electronic properties and Schottky barrier modulation in a multilayer graphene/bilayer-GaSe heterostructure by varying the interlayer spacing and by applying an external electric field. At the equilibrium state, the graphene is bound to bilayer-GaSe by a weak van der Waals interaction with the interlayer distance d of 3.40 angstrom with the binding energy per carbon atom of -37.71 meV. The projected band structure of the graphene/bilayer-GaSe heterostructure appears as a combination of each band structure of graphene and bilayer-GaSe. Moreover, a tiny band gap of about 10 meV is opened at the Dirac point in the graphene/bilayer-GaSe heterostructure due to the sublattice symmetry breaking. The band gap opening in graphene makes it suitable for potential applications in nanoelectronic and optoelectronic devices. The graphene/bilayer-GaSe heterostructure forms an n-type Schottky contact with the Schottky barrier height of 0.72 eV at the equilibrium interlayer spacing. Furthermore, a transformation from the n-type to p-type Schottky contact could be performed by decreasing the interlayer distance or by applying an electric field. This transformation is observed when the interlayer distance is smaller than 3.30 angstrom, or when the applied positive external electric field is larger than 0.0125 V angstrom(-1). These results are very important for designing new electronic Schottky devices based on graphene and other 2D semiconductors such as a graphene/bilayer-GaSe heterostructure.
机译:在这项工作中,使用密度泛函理论,我们通过改变层间间隔并通过施加外部电场来系统地通过系统地研究了多层石墨烯/双层 - Gase异质结构中的电子特性和肖特基势垒调制。在平衡状态下,石墨烯通过弱van der wa的弱与3.40埃距离的相互作用与3.40埃距离的相互作用,每种碳原子为-37.71mev。石墨烯/双层Gase异质结构的投影带结构表现为石墨烯和双层Gase的每个带结构的组合。此外,由于子分子对称性断裂,在石墨烯/双层-Gase-Gase杂交结构中的DIAC点打开大约10mEV的微小带隙。石墨烯中的带间隙开口使其适用于纳米电子和光电器件中的潜在应用。石墨烯/双层Gase异质结构在平衡层间间隔处形成与0.72eV的肖特基势垒高度的n型肖特基接触。此外,可以通过减小层间距离或通过施加电场来执行从n型到p型肖特基触点的变换。当层间距离小于3.30埃时,或者当施加的正外部电场大于0.0125V埃(-1)时,观察到该变换。这些结果对于基于石墨烯和其他2D半导体(例如石墨烯/双层Gase异质结构)设计新的电子肖特基器件非常重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号