...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Nonradiative dynamics determined by charge transfer induced hydrogen bonding: a combined femtosecond time-resolved fluorescence and density functional theoretical study of methyl dimethylaminobenzoate in water
【24h】

Nonradiative dynamics determined by charge transfer induced hydrogen bonding: a combined femtosecond time-resolved fluorescence and density functional theoretical study of methyl dimethylaminobenzoate in water

机译:电荷转移诱导氢键决定的非接种动力学:甲基二甲基氨基苯甲酸甲酯的杂交时间分辨荧光和密度官能理论研究

获取原文
获取原文并翻译 | 示例
           

摘要

As a case study of the interplay and the consequence of the interplay between intramolecular charge transfer (ICT) and intermolecular hydrogen (H)-bonding, a combined femtosecond time-resolved fluorescence (fs-TRF) and density functional theoretical (DFT) and time-dependent DFT (TDDFT) study has been conducted on methyl dimethylaminobenzoate (MDMABA) largely in a water solvent. Direct observation of the broadband spectra, anisotropy, and kinetic decays of fs-TRF from photo-excited MDMABA revealed a rapid ICT reaction occurring with a time constant of similar to 0.7 ps from an initial locally excited (LE) state identified to have the L-a pi pi* character; this produced a weakly emissive ICT state featuring radiative rate constant decreased by more than two orders of magnitude. The fluorescence of the ICT state is strongly quenched exhibiting a decay time of similar to 49.7 ps, unusually faster than the nanosecond range lifetime in a polar aprotic solvent when intersystem crossing (ISC) is the major deactivation channel. This, according to the study of the solvent kinetic isotope effect, is identified to originate from an instantly enhanced strong solute-solvent H-bonding induced by the ICT reaction which allows elimination of the ISC, and enables the nonradiative decay to proceed almost entirely through the otherwise inaccessible internal conversion from the ICT state. The enhancement of H-bonding is verified by the calculation which presents theoretical evidence for not only the binding site and binding energy of the H-bonding configuration but also the electronic and structural characterization, lending support to the twisted ICT (TICT) description of the photo-excited MDMABA. This study contributes a prominent example for the extraordinary ability of water and a decisive role of ICT promoted H-bonding in offering a highly effective molecular mechanism for rapid elimination of the electronic excitation energy. The results contain an important insight for the in-depth understanding of the excited state H-bonding dynamics, and also have significant implication for clarifying the "sunscreen controversy" of the DMABA type of UVB sunscreen molecule.
机译:作为对分子内电荷转移(ICT)和分子间氢(H) - 合并的相互作用的相互作用和结果的案例研究,组合的飞秒时间分辨荧光(FS-TRF)和密度函数理论(DFT)和时间 - 依赖DFT(TDDFT)研究已经在甲基二甲基氨基苯甲酸甲酯(MDMABA)上进行,主要是在水溶剂中。从光励磁MDMABA直接观察FS-TRF的FS-TRF的动力学衰减揭示了从识别的初始局部激发(LA)的初始局部激发(LA)的时间常数发生的快速ICT反应pi pi *字符;这产生了一种弱发射的ICT状态,具有辐射速率恒定的差异超过两个数量级。 ICT状态的荧光强烈地淬火,表现出类似于49.7ps的衰减时间,当交叉系统交叉(ISC)是主要的失活通道时,极性非质子溶剂中的纳秒范围寿命非常快。根据溶剂动力学同位素效应的研究,鉴定出源自ICT反应诱导的瞬间增强的强溶质溶剂H键,这允许消除ISC,并使非阵容衰减几乎完全通过否则无法访问ICT状态的内部转换。通过计算验证了H键的增强,该计算不仅呈现了H键合配置的结合位点和结合能量,而且提供了对扭曲ICT(图)描述的电子和结构表征的理论证据,而且是电子和结构表征,贷款支持照片兴奋的mdmaba。这项研究有助于突出的水域出现突出的水和ICT的决定性作用促进了H键,为快速消除电子励磁能量提供了高效的分子机制。结果包含对兴奋状态H键合动力学的深入了解的重要见解,并且对澄清DMABA类型的UVB防晒分子的“防晒争议”也具有显着意义。

著录项

  • 来源
  • 作者单位

    Shenzhen Univ Coll Chem &

    Environm Engn Shenzhen Guangdong Peoples R China;

    Shenzhen Univ Coll Chem &

    Environm Engn Shenzhen Guangdong Peoples R China;

    Shenzhen Univ Coll Chem &

    Environm Engn Shenzhen Guangdong Peoples R China;

    Hong Kong Polytech Univ Dept Appl Biol &

    Chem Technol Kowloon Hong Kong Peoples R China;

    Hong Kong Polytech Univ Dept Appl Biol &

    Chem Technol Kowloon Hong Kong Peoples R China;

    Hong Kong Polytech Univ Dept Appl Biol &

    Chem Technol Kowloon Hong Kong Peoples R China;

    Shenzhen Univ Coll Chem &

    Environm Engn Shenzhen Guangdong Peoples R China;

    Shenzhen Univ Coll Chem &

    Environm Engn Shenzhen Guangdong Peoples R China;

    Hong Kong Polytech Univ Dept Appl Biol &

    Chem Technol Kowloon Hong Kong Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号