首页> 外文期刊>Physical chemistry chemical physics: PCCP >Interface-induced enhancement of piezoelectricity in the (SrTiO3)(m)/(BaTiO3)(M-m) superlattice for energy harvesting applications
【24h】

Interface-induced enhancement of piezoelectricity in the (SrTiO3)(m)/(BaTiO3)(M-m) superlattice for energy harvesting applications

机译:界面诱导的(SRTIO3)(M)/(BATIO3)(M-M)超晶格的压电增强能量收集应用的超晶格

获取原文
获取原文并翻译 | 示例
           

摘要

We present the results of a detailed first principles study of the piezoelectric properties of the (SrTiO3)(m)/(BaTiO3)(M-m) heterostructure using the 3D STOm/BTOM-m superlattice model. The atomic basis set, hybrid functionals and slabs with different numbers of STO and BTO layers were used. The interplay between ferroelectric (FEz) and antiferrodistortive (AFD(z)) displacements is carefully analyzed. Based on the experimental data and group theoretical analysis, we deduce two possible space groups of tetragonal symmetry which allow us to reproduce the experimentally known pure STO and BTO bulk phases in the limiting cases, and to model the corresponding intermediate superlattices. The characteristic feature of the space group P4mm (#99) model is atomic displacements in the [001] direction, which allows us to simulate the FEz displacements, whereas the P4 (#75) model besides FEz displacements permits oxygen octahedra antiphase rotations around the [001] direction and thus AFD(z) displacements. Our calculations demonstrate that for m/M <= 0.75 layer ratios both models show similar geometries and piezoelectric constants. Moreover, both models predict an approximately 6-fold increase of the piezoelectric constant e(33) compared to the BaTiO3 bulk value, albeit at slightly different layer ratios. The obtained results clearly demonstrate that piezoelectricity arises due to the coordinated collective FEz displacements of atoms in both STO and BTO slabs and interfaces and reaches its maximum when the superlattice approaches the point where the tetragonal phase becomes unstable and transforms to a pseudo-cubic phase. We demonstrate that even a single or double layer of BTO is sufficient to trigger FEz displacements in the STO slab, in P4mm and P4 models, respectively.
机译:我们介绍了使用3D腹板/ BTOM-M超晶格模型的(SRTIO3)(M)/(BATIO3)异质结构的(SRTIO3)(M)(M)(M-M)异质结构的压电性质的详细第一原理研究。使用原子基集,混合函数和具有不同数量的STO和BTO层的板坯。仔细分析铁电(FEZ)和反晶体(AFD(Z))位移之间的相互作用。基于实验数据和群体的理论分析,我们推导了两种可能的四方对称空间组,使我们能够在限制情况下再现实验已知的纯STO和BTO体积,并模拟相应的中间超晶格。空间组P4mm(#99)模型的特征是[001]方向上的原子位移,其允许我们模拟FEZ位移,而P4(#75)模型除了FEZ位移之外允许氧气八面型反相旋转周围[001]方向和因此AFD(Z)位移。我们的计算表明,对于M / m <= 0.75层,两种模型显示出类似的几何形状和压电常数。此外,与BATIO3散装值相比,两种模型预测压电常数E(33)的大约6倍,尽管具有略微不同的层比。所获得的结果清楚地表明,压电的出现是由于在这两个STO原子和BTO板坯和接口的协调集体菲斯位移和当所述超晶格接近其中四方相变得不稳定,变换到一个假立方相的点达到其最大值。我们证明即使是单层BTO也足以分别在P4MM和P4模型中触发STO板坯中的FEZ位移。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号