...
首页> 外文期刊>Physical chemistry chemical physics: PCCP >Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations
【24h】

Second inflection point of water surface tension in the deeply supercooled regime revealed by entropy anomaly and surface structure using molecular dynamics simulations

机译:使用分子动力学模拟的熵异常和表面结构揭示了深度过冷制度的第二次拐点。

获取原文
获取原文并翻译 | 示例
           

摘要

The surface tension of supercooled water is of fundamental importance in physical chemistry and materials and atmospheric sciences. Controversy, however, exists over its temperature dependence in the supercooled regime, especially on the existence of the second inflection point (SIP). Here, we use molecular dynamics simulations of the SPC/E water model to study the surface tension of water (sigma(w)) as a function of temperature down to 198.15 K, and find a minimum point of surface excess entropy per unit area around approximate to 240-250 K. Additional simulations with the TIP4P/2005 water model also show consistent results. Hence, we predict an SIP of sigma(w) roughly in this region, at the boundary where the no man's land happens. The increase of surface entropy with decreasing temperature in the region below the inflection point is clearly an anomalous behavior, unknown for simple liquids. Furthermore, we find that sigma(w) has a near-linear correlation with the interfacial width, which can be well explained by the capillary wave theory. Deep in the supercooled regime, a compact water layer at the interface is detected in our simulations, which may be a key component that contributes to the deviation of surface tension from the International Association for the Properties of Water and Steam relationship. Our findings may advance the understanding of the origin of the anomalous properties of liquid water in the supercooled regime.
机译:过冷水的表面张力在物理化学和材料和大气科学中具有根本重要性。然而,争议存在于其在超冷凝机制中的温度依赖性,特别是在第二拐点(SIP)的存在上。在此,我们使用SPC / E水模型的分子动力学模拟来研究水的表面张力(Sigma(W))作为温度降至198.15 k的函数,并在周围的每个单位区域找到最小的表面过量熵点近似到240-250 K.与Tip4P / 2005水模型的额外模拟也显示出一致的结果。因此,我们预测在没有人的土地发生的边界的边界中大致在这个区域中略微的Σ(w)。表面熵的增加随着拐点低于拐点的温度降低显然是一种异常的行为,对于简单的液体未知。此外,我们发现Sigma(W)与界面宽度具有近线性相关性,该界面宽度可以通过毛细波理论很好地解释。在超级冷却状态下,在我们的模拟中检测到界面处的紧凑水层,这可能是一个关键组件,其有助于从国际水和蒸汽关系性质的国际协会偏离表面张力。我们的研究结果可以推进对超冷却制度中液体水的异常性质起源的理解。

著录项

  • 来源
  • 作者单位

    Max Planck Inst Chem Multiphase Chem Dept Hahn Meitner Weg 1 D-55128 Mainz Germany;

    Johannes Gutenberg Univ Mainz Inst Phys Staudinger Weg 7 D-55128 Mainz Germany;

    Max Planck Inst Chem Multiphase Chem Dept Hahn Meitner Weg 1 D-55128 Mainz Germany;

    Bielefeld Univ Fac Chem D-33615 Bielefeld Germany;

    Max Planck Inst Chem Multiphase Chem Dept Hahn Meitner Weg 1 D-55128 Mainz Germany;

    Max Planck Inst Chem Multiphase Chem Dept Hahn Meitner Weg 1 D-55128 Mainz Germany;

    Max Planck Inst Chem Multiphase Chem Dept Hahn Meitner Weg 1 D-55128 Mainz Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号