首页> 外文期刊>Physical chemistry chemical physics: PCCP >Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles
【24h】

Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles

机译:填充纳米粒子填充聚合物纳米复合材料的分子动力学模拟研究

获取原文
获取原文并翻译 | 示例
       

摘要

By employing coarse-grained molecular dynamics simulations, we investigated the fracture behavior of polymer nanocomposites (PNCs) filled with polymer-grafted nanoparticles (NPs) in detail by particularly regulating the grafting density and the length of the grafted chain. By calculating their fracture energy, we observed that their rupture properties first increase and then decrease with the increase of the grafting density or the length of the grafted chains. Their bond orientation degree and their van der Waals energy change are characterized to understand their fracture behavior. To further explain it, we analyzed the contributions of the matrix chains, grafted chains, and NPs to the total stress. It is interesting to find that the stress borne by one bead of matrix chains or NPs gradually increases with the grafting density, while the stress borne by the grafted chains first increases and then decreases. In addition, the stress borne by one bead of matrix chains or grafted chains gradually increases with the length of the grafted chains, while the stress borne by NPs remains nearly unchanged. As a result of these contributions, the optimal fracture properties appear at the moderate grafting density or length of the grafted chain. Then, the number of voids is quantified, which first increases and then decreases with strain because of the coalescence of small voids into large ones. Accompanying this, the maximum void size increases significantly. Furthermore, the maximum number of voids increases with the grafting density, while it is nearly independent of the length of the grafted chain. In particular, the voids are preferably generated at the end beads of the chains or at the surfaces of the NPs. In summary, this work could provide some further understanding of how the grafted chains affect the fracture properties of the PNCs.
机译:通过采用粗粒化的分子动力学模拟,通过特别调节接枝密度和接枝链的长度,研究了聚合物纳米复合材料(PNC)的骨折行为,详细地填充了聚合物接枝纳米颗粒(NPS)。通过计算其骨折能量,我们观察到它们的破裂特性首先增加,然后随着接枝密度的增加或接枝链的长度而降低。它们的债券定向度和van der Waals能量变化的特征是理解其骨折行为。为了进一步解释它,我们分析了矩阵链,接枝链和NPS的总压力的贡献。有趣的是发现由嫁接密度逐渐增加一个珠子或NPS的压力逐渐增加,而接枝链的应力首先增加,然后减少。此外,由基质链或接枝链的一个珠子承受的压力随着接枝链的长度而逐渐增加,而NPS承受的应力几乎没有变化。由于这些贡献,最佳裂缝性能出现在接枝链的中等接枝密度或长度处。然后,量化空隙的数量,其首先增加,然后由于小空隙的聚结成于大的空隙而减少。随之而来,最大空隙尺寸显着增加。此外,随着移植密度的增加,空隙的最大数量增加,而几乎与接枝链的长度无关。特别地,空隙优选地在链条的端珠或NPS的表面处产生。总之,这项工作可以进一步了解接枝链如何影响PNC的断裂性质。

著录项

  • 来源
  • 作者单位

    Beijing Univ Chem Technol Key Lab Beijing City Preparat &

    Proc Novel Polyme Beijing 10029 Peoples R China;

    Beijing Univ Chem Technol Key Lab Beijing City Preparat &

    Proc Novel Polyme Beijing 10029 Peoples R China;

    Beijing Univ Chem Technol Key Lab Beijing City Preparat &

    Proc Novel Polyme Beijing 10029 Peoples R China;

    Beijing Univ Chem Technol Key Lab Beijing City Preparat &

    Proc Novel Polyme Beijing 10029 Peoples R China;

    Beijing Univ Chem Technol Key Lab Beijing City Preparat &

    Proc Novel Polyme Beijing 10029 Peoples R China;

    Beijing Univ Chem Technol Key Lab Beijing City Preparat &

    Proc Novel Polyme Beijing 10029 Peoples R China;

    Beijing Univ Chem Technol Key Lab Beijing City Preparat &

    Proc Novel Polyme Beijing 10029 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 物理学;化学;
  • 关键词

  • 入库时间 2022-08-19 18:13:48

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号