首页> 外文期刊>Physical chemistry chemical physics: PCCP >The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution
【24h】

The role of nitrogen defects in graphitic carbon nitride for visible-light-driven hydrogen evolution

机译:氮缺陷在石墨氮化物中的作用,用于可见光氢气进化

获取原文
获取原文并翻译 | 示例
           

摘要

The introduction of nitrogen (N) defects (N vacancies labeled as V(n)s and cyano groups) has been demonstrated as one of the promising strategies to extend the light absorption range of graphitic carbon nitride (CN), thus improving the photocatalytic activity for hydrogen (H-2) evolution. However, the photocatalysis mechanism of such N-deficient CN (DCN) has not been fully understood. In this study, N defects are introduced into CN by a KOH-assisted thermal polymerization method. On the basis of experimental investigations and density functional theory (DFT) calculations, it is found that the extension of the absorption range of DCN is attributed to both the valence band (VB) tailing induced by V(n)s and bandgap narrowing induced by cyano groups. Moreover, the conduction band (CB) is lowered by the N defects, indicating a reduced driving force for H-2 evolution. Transient absorption (TA) spectroscopy reveals that when the electrons in the intrinsic VB of DCN are excited to the CB, the separation efficiency of these electrons and as-generated holes is seriously restricted by their low mobility. While when the electrons in VB tail states (V-n states) are excited to the CB, the separation efficiency of these electrons and as-generated holes could be almost maintained thanks to the improved mobility of the holes. As a result, DCN shows a limited enhancement of the H-2 evolution rate compared with CN under visible light irradiation. This work points out that extending the light absorption range of a given photocatalyst by doping (or self-doping) may be accompanied by some negative factors, which restrict the overall photocatalytic activity.
机译:已经证明了氮气(n)缺陷(标记为v(n)和氰基的缺陷)作为扩展石墨氮化物(CN)的光吸收范围的有希望的策略之一,从而改善光催化活性用于氢气(H-2)进化。然而,这种N缺陷的CN(DCN)的光催化机理尚未得到完全理解。在该研究中,通过KOH辅助热聚合方法将N缺陷引入CN。在实验研究和密度泛函理论(DFT)计算的基础上,发现DCN的吸收范围的延伸归因于V(n)S和带隙缩小的价频带(VB)尾部。 Cyano群体。此外,导通带(CB)由N缺陷降低,表示H-2进化的降低的驱动力。瞬态吸收(TA)光谱揭示了当DCN的内在VB中的电子激发到CB时,这些电子和产生的孔的分离效率受到它们的低迁移率。虽然当VB尾状状态(V-N状态)中的电子被激发到CB时,但由于孔的改进的迁移率,可以几乎保持这些电子和产生的孔的分离效率。结果,与可见光照射下的CN相比,DCN显示了H-2进化速率的有限增强。该工作指出,通过掺杂(或自掺杂)延伸给定光催化剂的光吸收范围可以伴随一些负面因素,限制整体光催化活性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号