...
首页> 外文期刊>ACS Sustainable Chemistry & Engineering >Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H-2 Evolution and CO2 Reduction
【24h】

Investigating the Role of Tunable Nitrogen Vacancies in Graphitic Carbon Nitride Nanosheets for Efficient Visible-Light-Driven H-2 Evolution and CO2 Reduction

机译:调查可调氮空位在石墨碳氮化物纳米片中的作用,以高效可见光驱动的H-2演化和CO2还原

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Vacancy engineering, that is, self-doping of vacancy in semiconductors, has become a commonly used strategy to tune the photocatalytic performances. However, there still lacks fundamental understanding of the role of the vacancies in semiconductor materials. Herein, the g-C3N4 nanosheets with tunable nitrogen vacancies are prepared as the photocatalysts for H-2 evolution and CO2 reduction to CO. On the basis of both experimental investigation and DFT calculations, nitrogen vacancies in g-C3N4 induce the formation of midgap states under the conduction band edge, The position of midgap states becomes deeper with the increasing of nitrogen vacancies. The g-C3N4 nanosheets with the optimized density of nitrogen vacancies display about 18 times and 4 times enhancement for H-2 evolution and of CO2 reduction to CO, respectively, as compared to the bulk g-C3N4. This is attributed to the synergistic effects of several factors including (1) nitrogen vacancies cause the excitation of electrons to midgap states below the conduction band edge, which results in extension of the visible light absorption to photons of longer wavelengths (up to 598 nm); (2) the suitable midgap states could trap photogenerated electrons to minimize the recombination loss of photogenerated electron hole pairs; and (3) nitrogen vacancies lead to uniformly anchored small Pt nanoparticles (1-2 nm) on g-C3N4, and facilitate the electron transfer to Pt. However, the overintroduction of nitrogen vacancies generates deeper midgap states as the recombination centers, which results in deterioration of photocatalytic activities. Our work is expected to provide new insights for fabrication of nanomaterials with suitable vacancies for solar fuel generation.
机译:空缺工程,即半导体空缺的自我兴奋,已成为调整光催化性能的常用策略。然而,仍然缺乏对半导体材料空位的作用的基本理解。在此,具有可调谐氮空位的G-C3N4纳米片被制备为H-2进化和CO2降低到CO的光催化剂。在实验研究和DFT计算的基础上,G-C3N4中的氮空位诱导中层态的形成在导通带边缘下,中间态态的位置随着氮空位的增加而深入。与本体G-C3N4相比,具有优化的氮空位的G-C3N4纳米蛋白酶呈现优化的氮空位密度,分别为H-2进化和CO 2减少CO的4倍和4倍。这归因于包括(1)氮空位的若干因素的协同效应,导致电子对导带边缘下方的电子到中间夹的激发,这导致延长较长波长的光子(高达598nm)的可见光吸收; (2)合适的中间涂层可以捕获光生电子以最小化光发性电子孔对的重组损失; (3)氮空位在G-C3N4上均匀锚定小Pt纳米颗粒(1-2nm),并促进电子转移至pt。然而,氮空位的过度调节产生更深的中间藏态状态作为重组中心,导致光催化活性的恶化。我们的工作有望为纳米材料制作具有适当的太阳能燃料的空缺来提供新的洞察。

著录项

  • 来源
  • 作者单位

    Nanyang Technol Univ Sch Chem &

    Biomed Engn 62 Nanyang Dr Singapore 637459 Singapore;

    Nanyang Technol Univ Sch Chem &

    Biomed Engn 62 Nanyang Dr Singapore 637459 Singapore;

    Hohai Univ Coll Mech &

    Mat 1 Xikang Rd Nanjing 210098 Jiangsu Peoples R China;

    Nanyang Technol Univ Sch Mat Sci &

    Engn 50 Nanyang Ave Singapore 639798 Singapore;

    Nanyang Technol Univ Sch Chem &

    Biomed Engn 62 Nanyang Dr Singapore 637459 Singapore;

    Nanyang Technol Univ Sch Chem &

    Biomed Engn 62 Nanyang Dr Singapore 637459 Singapore;

    Nanyang Technol Univ Sch Chem &

    Biomed Engn 62 Nanyang Dr Singapore 637459 Singapore;

    Nanyang Technol Univ Sch Chem &

    Biomed Engn 62 Nanyang Dr Singapore 637459 Singapore;

    Nanyang Technol Univ Sch Mat Sci &

    Engn 50 Nanyang Ave Singapore 639798 Singapore;

    Nanjing Univ Sch Phys Inst Acoust Lab Modern Acoust MOE 22 Hankou Rd Nanjing 210093 Jiangsu Peoples R China;

    Nanjing Univ Sch Phys Inst Acoust Lab Modern Acoust MOE 22 Hankou Rd Nanjing 210093 Jiangsu Peoples R China;

    Univ Cambridge Dept Engn 9 JJ Thomson Ave Cambridge CB3 0FA England;

    Natl Res Fdn CREATE C4T CREATE Tower 1 Create Way Singapore 138602 Singapore;

    Nanyang Technol Univ Sch Chem &

    Biomed Engn 62 Nanyang Dr Singapore 637459 Singapore;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学工业;
  • 关键词

    Photocatalysis; g-C3N4; Nitrogen vacancy; Midgap states;

    机译:光催化;G-C3N4;氮空位;中间态态;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号