首页> 外文期刊>Physics in medicine and biology. >Compton PET: a layered structure PET detector with high performance
【24h】

Compton PET: a layered structure PET detector with high performance

机译:康普顿宠物:具有高性能的分层结构宠物检测器

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

In most high-resolution PET detector designs, there is an inherent trade-off between spatial resolution and detector efficiency. We have developed and tested a new geometry for the detector module which avoids this trade-off. The module uses a layered structure, in which four crystal slabs are stacked in the depth direction and optically separated by enhanced specular reflector (ESR) film. The scintillation light within each layer is measured by 16 SiPMs located on the four sides of the crystal. Analog signals from all SiPMs (4 x 16) on the four sides of the crystal are digitized individually using a 64-channel TOFPET-2 module. The four-sided readout method reduces the problem of light trapping resulting from total internal reflection when reading out the end(s) of traditional scintillation crystal arrays, thus increasing the light collection efficiency. In this work, we demonstrate the readout of a complete layered detector with 4 layers. The high light collection efficiency results in a FWHM energy resolution of 10.3%, and a FWHM timing resolution of 348 ps. The distribution of scintillation light detected by the SiPMs was used to decode the interaction position of each gamma ray using a trained neural network. A FWHM spatial resolution of 1.1 +/- 0.1 mm was achieved. This design allows the detection efficiency of the module to be increased by adding additional crystal slabs along the depth direction. Since the position, energy, and timing are measured for each layer independently, increasing the system sensitivity by adding more layers will not affect the spatial/energy/timing resolution. Furthermore, the layered structure allows partial recovery of position information for events that undergo Compton scatter within the detector.
机译:在大多数高分辨率PET探测器设计中,空间分辨率和检测器效率之间存在固有的折衷。我们已经开发并测试了探测器模块的新几何形状,避免了这种权衡。该模块使用分层结构,其中四个晶体板在深度方向上堆叠并通过增强的镜面反射器(ESR)膜光学分离。每层内的闪烁光通过位于晶体的四个侧面的16个横升线测量。使用64通道Tofpet-2模块单独数字化来自晶体四边的所有SIPMS(4 x 16)的模拟信号。四面读数方法减少了在读出传统闪烁晶体阵列的端部时由全内反射产生的光俘获的问题,从而增加了光收集效率。在这项工作中,我们展示了具有4层的完整分层检测器的读数。高光收集效率导致FWHM能量分辨率为10.3%,以及348 PS的FWHM定时分辨率。 SIPMS检测到的闪烁光的分布用于使用训练的神经网络对每个伽马射线的相互作用位置进行解码。实现了1.1 +/- 0.1mm的FWHM空间分辨率。该设计允许通过沿深度方向添加额外的晶板来增加模块的检测效率。由于独立地为每个层测量位置,能量和时序,因此通过添加更多层增加系统灵敏度不会影响空间/能量/时序分辨率。此外,分层结构允许部分恢复用于在检测器内进行COPPON散射的事件的位置信息。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号