...
首页> 外文期刊>Sensors and Actuators, A. Physical >Dosed carbon precipitation and graphene layer number control on nickel micro-electromechanical systems surfaces
【24h】

Dosed carbon precipitation and graphene layer number control on nickel micro-electromechanical systems surfaces

机译:镍微机电系统表面上的碳沉淀和石墨烯层数控制

获取原文
获取原文并翻译 | 示例

摘要

In this paper, we report on the in situ synthesis of graphene layers by means of chemical vapor deposition (CVD), directly on nickel micro-electromechanical systems (MEMS) surfaces. We have developed MEMS structures of which the temperature can be increased locally by Joule heating while in a methane environment. For our MEMS structures, the thermal time constant is 28 mu s a result, we have control over the carbon precipitation time, thereby governing how many graphene layers are formed. Bi-layer to multi-layer graphene was observed using micro-Raman spectroscopy, but not single-layer graphene, as it gives no Raman signal when coupled on a nickel surface. The corresponding precipitation control theory is also presented in this paper, in which we relate the out-diffusion of carbon atoms from the grains of the nickel structure to the resulting number of graphene layers. Our method provides regulated carbon segregation from nickel and allows a prescribed number of graphene layers to form by tuning the precipitation time. In this way, we enable the direct in situ synthesis of graphene locally on the top and sidewalls of nickel MEMS structures, so that e.g. such graphene-coated MEMS surfaces can contribute towards a promising solution against friction and wear for MEMS devices with sliding components. (C) 2020 The Authors. Published by Elsevier B.V.
机译:在本文中,我们通过直接在镍微机电系统(MEMS)表面上通过化学气相沉积(CVD)来报告石墨烯层的原位合成。我们开发了MEMS结构,其中通过甲烷环境中的焦耳加热可以在本地增加温度。对于我们的MEMS结构,热时间常数是28μm的结果,我们可以控制碳沉淀时间,从而控制形成有多少石墨烯层。使用微拉曼光谱观察到多层石墨烯的双层,但不是单层石墨烯,因为当偶联在镍表面上时没有拉曼信号。本文还介绍了相应的沉淀控制理论,其中我们将碳原子与镍结构颗粒的外扩散联系起来,以得到的石墨烯层的数量。我们的方法通过沉淀时间提供来自镍的调节碳偏析,并允许规定数量的石墨烯层形成。以这种方式,我们在镍MEMS结构的顶部和侧壁上局部地使得直接原位合成石墨烯,使得例如。这些石墨烯的MEMS表面可以朝着具有滑动部件的MEMS器件的对抗摩擦和磨损的有前途的解决方案。 (c)2020作者。由elsevier b.v出版。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号