首页> 外文期刊>Molecular Microbiology >Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification
【24h】

Streptococcal dTDP-L-rhamnose biosynthesis enzymes: functional characterization and lead compound identification

机译:链球菌DTDP-L-鼻窦生物合成酶:功能表征和铅化合物鉴定

获取原文
获取原文并翻译 | 示例
           

摘要

Biosynthesis of the nucleotide sugar precursor dTDP-L-rhamnose is critical for the viability and virulence of many human pathogenic bacteria, including Streptococcus pyogenes (Group A Streptococcus; GAS), Streptococcus mutans and Mycobacterium tuberculosis. Streptococcal pathogens require dTDP-L-rhamnose for the production of structurally similar rhamnose polysaccharides in their cell wall. Via heterologous expression in S. mutans, we confirmed that GAS RmlB and RmlC are critical for dTDP-L-rhamnose biosynthesis through their action as dTDP-glucose-4,6-dehydratase and dTDP-4-keto-6-deoxyglucose-3,5-epimerase enzymes respectively. Complementation with GAS RmlB and RmlC containing specific point mutations corroborated the conservation of previous identified catalytic residues. Bio-layer interferometry was used to identify and confirm inhibitory lead compounds that bind to GAS dTDP-rhamnose biosynthesis enzymes RmlB, RmlC and GacA. One of the identified compounds, Ri03, inhibited growth of GAS, other rhamnose-dependent streptococcal pathogens as well as M. tuberculosis with an IC50 of 120-410 mu M. Importantly, we confirmed that Ri03 inhibited dTDP-L-rhamnose formation in a concentration-dependent manner through a biochemical assay with recombinant rhamnose biosynthesis enzymes. We therefore conclude that inhibitors of dTDP-L-rhamnose biosynthesis, such as Ri03, affect streptococcal and mycobacterial viability and can serve as lead compounds for the development of a new class of antibiotics that targets dTDP-rhamnose biosynthesis in pathogenic bacteria.
机译:核苷酸前体DTDP-L-rhamnose的生物合成对于许多人病原菌的活力和毒力至关重要,包括链球菌(链球菌组;气体),链球菌异常和结核分枝杆菌。链球菌病原体需要DTDP-L-rhamnose用于在其细胞壁中生产在结构上类似的耳糖多糖。通过在S.ulans中的异源表达,我们证实通过作为DTDP-葡萄糖-4,6-脱水酶和DTDP-4-酮-6-脱氧-3至DTDP-L-rhAMNose生物合成至DTDP-L-rhamnose生物合成至关重要。分别为5-截止酶酶。互补含有含有特定点突变的气体RMLB和RMLC的互补性得到了先前鉴定的催化残基的保护。生物层干涉测量法用于鉴定和确认与气体DTDP-rhamnose生物合成酶RMLB,RMLC和GACA结合的抑制铅化合物。鉴定的化合物,RI03,抑制天然气的生长,其他鼠李糖依赖性链球菌病原体以及具有120-410亩的IC50的肺结核凋亡。重要的是,我们证实RI03抑制了A中的DTDP-L-rhamnose形成通过具有重组鼻窦生物合成酶的生物化学测定浓度依赖性方式。因此,我们得出结论,DTDP-L-鼻窦生物合成的抑制剂,如RI03,影响链球菌和分枝杆菌活力,并且可以作为铅化合物,用于开发靶向致病菌中DTDP-rhamnose生物合成的新类抗生素。

著录项

  • 来源
    《Molecular Microbiology》 |2019年第4期|共14页
  • 作者单位

    Univ Utrecht Univ Med Ctr Utrecht Dept Med Microbiol Heidelberglaan 100 NL-3584 CX Utrecht;

    Univ Dundee Sch Life Sci Div Mol Microbiol Dow St Dundee DD1 5EH Scotland;

    Univ Utrecht Univ Med Ctr Utrecht Dept Med Microbiol Heidelberglaan 100 NL-3584 CX Utrecht;

    Univ Georgia Dept Chem Complex Carbohydrate Res Ctr 315 Riverbend Rd Athens GA 30602 USA;

    Univ Dundee Sch Life Sci Div Mol Microbiol Dow St Dundee DD1 5EH Scotland;

    Univ Dundee Sch Life Sci Div Mol Microbiol Dow St Dundee DD1 5EH Scotland;

    Francis Crick Inst Mycobacterial Metab &

    Antibiot Res Lab London England;

    Francis Crick Inst Mycobacterial Metab &

    Antibiot Res Lab London England;

    Univ Georgia Dept Chem Complex Carbohydrate Res Ctr 315 Riverbend Rd Athens GA 30602 USA;

    Univ Dundee Sch Life Sci Div Mol Microbiol Dow St Dundee DD1 5EH Scotland;

    Univ Utrecht Univ Med Ctr Utrecht Dept Med Microbiol Heidelberglaan 100 NL-3584 CX Utrecht;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 细胞生物学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号