首页> 外文期刊>Optics Communications: A Journal Devoted to the Rapid Publication of Short Contributions in the Field of Optics and Interaction of Light with Matter >Efficient unidirectional light propagation realized via asymmetrically exciting and transmitting Tamm plasmon-polaritons in a metal-dielectric-metal waveguide
【24h】

Efficient unidirectional light propagation realized via asymmetrically exciting and transmitting Tamm plasmon-polaritons in a metal-dielectric-metal waveguide

机译:通过在金属介质 - 金属波导中通过不对称激发和传输TAMM等离子 - 极性官员实现有效的单向光传播

获取原文
获取原文并翻译 | 示例
           

摘要

An efficient nanoscale unidirectional transmission device at telecommunication wavelength is proposed, which is made up of a metal-dielectric-metal (MDM) waveguide. The waveguide core is asymmetric and comprises of a one-dimensional photonic crystal (PhC), a thin Ag film and a dielectric layer in a sequential order. In this waveguide structure, the PhC acts as a finite potential barrier and the unidirectional propagation is realized by combining the photonic bandgap effect and the asymmetric excitations of Tamm plasmon polaritons (TPPs) on two sides of the PhC. With respect to asymmetric excitation, the TPPs are only excited at the interface between the PhC and the Ag core film, and not excited on the other facet of the PhC. Further, for the forward transmission, the TPPs can penetrate the thin Ag core film and is then coupled to the surface plasmon-polaritons (SPPs) for the following propagation, which is also enhanced in this work by utilizing the F-P resonance in the dielectric layer. Differently, for the backward transmission, the TPPs cannot tunnel through the PhC because it is trapped in the stopband of the PhC. The numerical simulations demonstrate that the maximum forward transmittance of 87% and a high transmission contrast ratio of 1250 are achieved.
机译:提出了一种高效的纳米级单向传输装置,用于电信波长,其由金属介质 - 金属(MDM)波导构成。波导芯不对称,并且以顺序顺序包括一维光子晶体(PHC),薄Ag膜和介电层。在该波导结构中,PHC用作有限势垒,通过将光子带隙效应和TAMP等离子体(TPP)在PHC的两侧相结合来实现单向传播。关于不对称激发,TPP仅在PHC和AG核心膜之间的界面处激发,并且在PHC的其他方面上不激发。此外,对于前进传输,TPP可以穿透薄AG芯膜,然后耦合到表面等离子体 - 极性子(SPP),用于以下传播,通过利用介电层中的FP谐振,在该工作中也增强了这一点。不同地,对于向后传输,TPP不能通过PHC隧道隧道捕获,因为它被捕获在PHC的停止带中。数值模拟表明,实现了87%的最大正向透射率和1250的高透射对比度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号