...
首页> 外文期刊>Optics Communications: A Journal Devoted to the Rapid Publication of Short Contributions in the Field of Optics and Interaction of Light with Matter >Ultra-broadband and high absorbance metamaterial absorber in long wavelength Infrared based on hybridization of embedded cavity modes
【24h】

Ultra-broadband and high absorbance metamaterial absorber in long wavelength Infrared based on hybridization of embedded cavity modes

机译:基于嵌入式腔模式杂交的长波长红外线的超宽带和高吸光度超材料吸收器

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

We present a novel ultra-broadband, polarization-independent, and wide-angle metamaterial absorber whose metal-insulator-metal cavities are embedded into bulk insulator nanodisks. The hybridization of multiple embedded cavity modes generated by the combination of dielectric-loaded surface plasmon polaritons waveguide and cavity modes contributes to large bandwidth and high absorption in the long wavelength infrared (LWIR) region. The proposed structure exhibits more than 94% absorbance in the interval from 8 mu m to 16 mu m; and more than 95% absorbance over the whole LWIR band (8-14 mu m), which is superior than the initial MIM structure (absorption greater than 90% from 8.10-14.33 mu m) and similar kinds of metamaterial absorber based on noble metal. In addition, a nearly perfect absorbance (more than 99%) is obtained in the 11.22-12.46 mu m and 13.26-14.59 mu m wavebands. Moreover, results show that the resonant wavelength and operating bandwidth can be adjusted flexibly by varying related geometry parameters. Thus, the wavelength-selective metamaterial absorber is promising for thermal emitters, energy harvester and microbolometers.
机译:我们提出了一种新型的超宽带,独立于极化和和广角超材料吸收器,其金属绝缘体 - 金属腔嵌入散装绝缘体纳米型中。由介电加载的表面等离子体波导和腔模式的组合产生的多个嵌入腔模式的杂交有助于在长波长红外(LWIR)区域中的大带宽和高吸收。所提出的结构在8 mu m至16 mu m的间隔中表现出超过94%的吸光度;在整个LWIR带(8-14亩)上的吸光度超过95%,比初始MIM结构(吸收大于80-14.33μm),以及基于贵金属的类似种类的超材料吸收器。此外,在11.22-12.46 mu m和13.26-14.59 mu m m m m mu m波带中获得几乎完美的吸光度(超过99%)。此外,结果表明,通过不同的相关几何参数可以灵活地调节谐振波长和操作带宽。因此,波长选择性超材料吸收器对热发射器,能量收割机和微压计是有望的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号