...
首页> 外文期刊>RSC Advances >A new paradigm on the chemical potentials of components in multi-component nano-phases within multi-phase systems
【24h】

A new paradigm on the chemical potentials of components in multi-component nano-phases within multi-phase systems

机译:多相系统中多组分纳米阶段成分化学势的新范式

获取原文
获取原文并翻译 | 示例
           

摘要

The chemical potentials of components in nano-phases determine the equilibrium of nano-materials. In this paper the difference between the equilibrium of a nano-phase and the equilibrium of an analogous macro-phase under the same constraints is called a "nano-effect". Historically the first paper to describe the nano-effect was published by Kelvin (1871), claiming that it is due to the increased curvature of the nano-phase. This approach forms the basis of the Kelvin paradigm, still widely used in chemistry, biology and materials science (but not in physics). The Kelvin paradigm is the basis of the Kelvin equation, the Gibbs-Thomson equation and the Ostwald-Freundlich equation for the vapor pressure, melting point and solubility of nano-phases, respectively. The Kelvin paradigm is also successful in the interpretation of more complex phenomena, such as capillary condensation. However, the Kelvin paradigm predicts no nano-effect for not curved nano-phases, such as crystals and thin films, contradicting experimental facts. Moreover, it wrongly predicts that a cubic (or any other crystal-shaped) nano-droplet is more stable than a spherical nano-droplet of the same volume (this contradiction is shown here for the first time). In addition to its positive features, these and other shortcomings of the Kelvin paradigm call for a paradigm shift. A new paradigm is presented in this paper, claiming that the nano-effect is due to the increased specific surface area of the nano-phase. Chemical potentials of components in multicomponent phases are derived in this paper within this new paradigm. These equations are extended for nano-phases in multi-phase situations, such as liquids confined within nano-capillaries, or nano-sized sessile drops attached to flat solid substrates. The new paradigm leads to similar results compared to the Kelvin paradigm for the case of capillary condensation into capillaries (this is because the specific surface area of a cylindrical wall is the same as the curvature of the spherical phase: 2/r). However, the new paradigm is able to provide meaningful solutions also for problems, not tractable by the Kelvin equation, such as the case of crystals and thin films having no curvature.
机译:纳米阶段成分的化学电位确定了纳米材料的平衡。在本文中,在相同约束下纳米阶段平衡和类似的宏相平衡的差异称为“纳米效应”。从历史上看,描述了描述纳米效应的纸张由开尔文(1871)发表,声称它是由于纳米阶段的曲率增加。这种方法构成了克尔文范例的基础,仍然广泛用于化学,生物学和材料科学(但不在物理学中)。 Kelvin范式是Kelvin方程,Gibbs-Thomson方程和纳米相的蒸气压,熔点和溶解度的蒸气压力,熔点和溶解度的基础。 Kelvin范式也成功地解释了更复杂的现象,例如毛细血管凝结。然而,开尔文范例预测不弯曲纳米阶段的纳米效应,例如晶体和薄膜,与实验事实相矛盾。此外,错误地预测了立方(或任何其他晶形)纳米液滴比相同体积的球形纳米液滴更稳定(这矛盾首次在此示出)。除了其积极的特征,这些和其他缺点的Kelvin范式呼吁用于范式班次。本文提出了一种新的范式,声称纳米效应是由于纳米阶段的比表面积增加。本文在这篇新的范例中衍生在本文中的组分组分的化学电位。这些方程被延长用于多相情况中的纳米阶段,例如局限于纳米毛细管内的液体,或附着在扁平固体基材上的纳米尺寸的无颗粒滴。与毛细血管缩合到毛细血管的毛细血管缩合的情况相比,新的范例导致类似的结果相比(这是因为圆柱形壁的比表面积与球形相位:2 / R的曲率相同)。然而,新的范例也能够提供有意义的解决方案,也可以通过Kelvin方程而言而不是易行的问题,例如晶体和没有曲率的薄膜的情况。

著录项

  • 来源
    《RSC Advances》 |2017年第65期|共13页
  • 作者

    Kaptay George;

  • 作者单位

    Univ Miskolc Dept Nanotechnol H-3525 Miskolc Hungary;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号