首页> 外文期刊>RSC Advances >A hierarchical NiCo2S4 honeycomb/NiCo2S4 nanosheet core-shell structure for supercapacitor applications
【24h】

A hierarchical NiCo2S4 honeycomb/NiCo2S4 nanosheet core-shell structure for supercapacitor applications

机译:用于超级电容器应用的分层Nico2S4蜂窝/ Nico2S4纳米壳结构

获取原文
获取原文并翻译 | 示例
           

摘要

Transition metal sulphides are becoming one of the promising materials for energy storage applications. Particularly, an advanced electrode material architecture, which gives favourable electronic and ionic conductivity, is highly in demand. Herein, a hierarchical NiCo2S4 honeycomb/NiCo2S4 nanosheet core-shell structure is reported for supercapacitor applications. The core-shell structure was in situ grown on a nickel foam via two consecutive hydrothermal processes, followed by an electrochemical deposition process. Moreover, we tuned the deposition cycle to get abundant active sites with gaps of suitable sizes between the walls of the honeycomb structure for efficient electrolyte diffusion routes. The 3D honeycomb core structure was used as superhighway for electron transport to the current collector, while the ultrathin shell structure offered a large surface area with short electron and ion diffusion paths, thus leading to the faster kinetics and higher utilization of active materials. Thus, using the synergistic advantages of the core material and the shell material, the as-synthesized optimized electrode material came up with an excellent specific capacitance of 17.56 F cm(-2) at a current density of 5 mA cm(-2) and the highest cycling stability of 88.2% after 5000 cycles of charge-discharge process. Such advanced electrode architectures are highly promising for the future electrode materials.
机译:过渡金属硫化物成为能量储存应用的有希望的材料之一。特别是,提供有利的电子和离子电导率的先进电极材料结构非常有效。这里,报告了超级电容器应用的分层NiCO2S4蜂窝/ NicO2S4纳米壳结构。通过两个连续的水热过程原位在镍泡沫上生长,然后是电化学沉积过程。此外,我们调整了沉积周期以获得丰富的有源网站,在蜂窝结构的壁之间具有适当尺寸的差距,以实现有效的电解质扩散途径。所述3D蜂窝芯结构被用作高速公路用于电子传输到集电体,而超薄壳结构提供具有短的电子和离子的扩散路径的大的表面积,从而导致更快的动力学和活性材料的利用率较高。因此,使用芯材料和壳材料的协同优点,AS合成的优化电极材料上升的优异比电容为17.56f(-2),电流密度为5 mA cm(-2)在5000次充电放电过程后,最高循环稳定性为88.2%。这种先进的电极架构对未来电极材料具有高度前途。

著录项

  • 来源
    《RSC Advances》 |2019年第55期|共10页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号