首页> 外文期刊>RSC Advances >A novel quartz-crystal microbalance humidity sensor based on solution-processible indium oxide quantum dots
【24h】

A novel quartz-crystal microbalance humidity sensor based on solution-processible indium oxide quantum dots

机译:一种基于溶液的石英晶微相湿度传感器,基于溶液 - 可行的氧化铟氧化物量子点

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Having a large surface area, like the quantum confinement effect also caused by the nano-level size of quantum dots (QDs), creates fantastic potential for humidity sensing. A high concentration of surface adsorption sites initiates an increased response. Porosity between QDs allows fast water vapor penetration and outflow. Here, a quartz-crystal microbalance (QCM) humidity sensor was prepared using indium oxide (In2O3) QDs, synthesized via a solvothermal method. After the In2O3 QDs were directly spin-coated onto the QCM, an annealing process removed organic long chains and exposed more moisture adsorption sites on the surfaces of the QDs. The annealed QCM humidity sensor exhibited high sensitivity (56.3 Hz per %RH at 86.3% RH), with a fast response/recovery time (14 s/16 s). Long carbon chains were broken down, and hydrogen-bonded hydroxyl groups were chemisorbed to the QDs. The chemical reaction was reduced by these chemisorbed hydrogen-bonded hydroxyl groups. Mass change was mostly caused by fast multilayer physisorption. Thus, the transducer can effectively and precisely monitor the moisture from a person's breath. In2O3 QD-modified QCM sensors demonstrate promising humidity-sensing applications in daily life.
机译:具有大的表面积,如量子限制效果也由量子点(QDS)的纳米级大小引起,产生湿度感测的奇妙潜力。高浓度的表面吸附位点引发了增加的反应。 QD之间的孔隙率允许快速水蒸气渗透和流出。这里,使用氧化铟(In2O3)QDS制备石英晶微观(QCM)湿度传感器,通过溶剂热法合成。在将In2O3 QD直接旋涂到QCM上之后,退火过程除去有机长链并在QDS的表面上暴露更多的水分吸附位点。退火的QCM湿度传感器表现出高灵敏度(56.3Hz /%RH),具有快速响应/恢复时间(14秒S / 16秒)。长碳链分解,氢键氢羟基化学吸附到QDS中。通过这些化学吸附的氢键键合羟基降低化学反应。质量变化主要是由快速多层物理吸附引起的。因此,换能器可以有效地能够精确地监测人呼吸的水分。 IN2O3 QD改性的QCM传感器在日常生活中展示了有前途的湿度传感应用。

著录项

  • 来源
    《RSC Advances》 |2019年第66期|共7页
  • 作者

  • 作者单位
  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号