...
首页> 外文期刊>RSC Advances >The effects of deposition time and current density on the electrochemical performance of flexible and high-performance MnO2@PFG composite electrodes
【24h】

The effects of deposition time and current density on the electrochemical performance of flexible and high-performance MnO2@PFG composite electrodes

机译:沉积时间和电流密度对柔性高性能MnO2 @ PFG复合电极电化学性能的影响

获取原文
获取原文并翻译 | 示例

摘要

A novel composite electrode has been fabricated by the direct deposition of MnO2 onto graphene networks surrounding a paper fiber (PFG). The paper fiber between graphene sheets could be used as a flexible substrate for MnO2 nanoparticles, and the microscopic morphologies and electrochemical performances of the MnO2@PFG electrodes were tuned via regulating the deposition current densities and deposition times. 3D graphene on PFG served as a highly conductive backbone with a high surface area for the deposition of the MnO2 nanoparticles, which provided high accessibility to electrolyte ions for shortening the diffusion paths. The MnO2-10-600 s@PFG composite electrode achieved a maximum specific capacitance of 878.6 mF cm(-2) with an MnO2 loading mass of 3.62 mg cm(-2) (specific capacitance of 187.7 F g(-1)) at a current density of 0.5 mA cm(-2) in a 1 M NaSO4 aqueous solution. Additionally, the MnO2-10-600 s@PFG composite material with the most favorable composite ratio exhibited the highest energy density of 61.01 mW h cm(-2), maximum power density of 1249.78 mW cm(-2), excellent capacitance retention with no more than 7% capacitance loss after 10 000 cycles and good mechanical flexibility (about 91.06% of its original capacitance after 500 bending times). By combining the electric double layer capacitance of graphene networks with the pseudocapacitance of the MnO2 nanostructures, the flexible electrode showed much enhanced electrochemical capacitance behaviors with robust tolerance to mechanical deformation; thus, it is promising for being woven into textiles for wearable electronics.
机译:一种新颖的复合电极得到了二氧化锰直接沉积制造在包围纸纤维(PFG)石墨烯网络。石墨烯片之间的纤维纸可以用作二氧化锰纳米颗粒的挠性基板,和微观形态和二氧化锰@ PFG电极的电化学性能进行了通过调节沉积的电流密度和沉积时间调整。上PFG三维石墨担任与二氧化锰纳米颗粒,其用于缩短扩散路径提供高可访问性电解质离子的沉积的高表面积的高导电支柱。所述MnO2-10-600小号@ PFG复合电极具有一个3.62的MnO 2装载质量达到878.6 mF及其厘米(-2)的最大比电容毫克厘米(-2)在((-1)的187.7 F G比电容)的0.5毫安厘米(-2)中的1M NaSO4水溶液的电流密度。此外,该MnO2-10-600小号@ PFG以最优惠的复合比复合材料表现出61.01毫瓦高厘米(-2)的1249.78毫瓦厘米(-2),优异的电容保留有,最大功率密度最高的能量密度无10 000次循环后超过7%的电容损失和良好的机械柔软性(大约是其原始电容的91.06%后500弯曲倍)。通过结合的石墨烯的网络与所述的MnO 2纳米结构的赝双电层电容,柔性电极显示出增强了很多具有强大的耐受性的机械变形的电化学电容行为;因此,它是有希望的用于被织成纺织品可穿戴式电子。

著录项

  • 来源
    《RSC Advances 》 |2020年第6期| 共10页
  • 作者单位

    Beying Forestry Univ MOE Engn Res Ctr Forestry Biomass Mat &

    Bioenergy Beying Key Lab Lignocellulos Chem MOE Key Lab Wooden Mat Sci &

    Applicat 35 Qinghua East Rd Beijing 100083 Peoples R China;

    Beying Forestry Univ MOE Engn Res Ctr Forestry Biomass Mat &

    Bioenergy Beying Key Lab Lignocellulos Chem MOE Key Lab Wooden Mat Sci &

    Applicat 35 Qinghua East Rd Beijing 100083 Peoples R China;

    Beying Forestry Univ MOE Engn Res Ctr Forestry Biomass Mat &

    Bioenergy Beying Key Lab Lignocellulos Chem MOE Key Lab Wooden Mat Sci &

    Applicat 35 Qinghua East Rd Beijing 100083 Peoples R China;

    Beying Forestry Univ MOE Engn Res Ctr Forestry Biomass Mat &

    Bioenergy Beying Key Lab Lignocellulos Chem MOE Key Lab Wooden Mat Sci &

    Applicat 35 Qinghua East Rd Beijing 100083 Peoples R China;

    Beying Forestry Univ MOE Engn Res Ctr Forestry Biomass Mat &

    Bioenergy Beying Key Lab Lignocellulos Chem MOE Key Lab Wooden Mat Sci &

    Applicat 35 Qinghua East Rd Beijing 100083 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号