...
首页> 外文期刊>RSC Advances >Magneto-induced rheological properties of magnetorheological gel under quasi-static shear with large deformation
【24h】

Magneto-induced rheological properties of magnetorheological gel under quasi-static shear with large deformation

机译:大变形时静态剪切下磁流变凝胶的流变性能

获取原文
获取原文并翻译 | 示例

摘要

Magnetorheological gel (MRG) is a kind of magneto-sensitive smart material mainly composed of soft magnetic particles and polyurethane, which can decrease or even avoid the severe sedimentation problem appearing in MR fluids. In this work, the rheological properties of MRG under quasi-statically monotonic and cyclic loading with large deformation were investigated, respectively. The results could provide effective guidance for the design of MR devices that are often subjected to quasi-static loading. Firstly, MRG was fabricated by mixing carbonyl iron particles (CIPs) with the polyurethane matrix. Then, variations of normal force with time and magnetic field for MRG were tested and discussed. Moreover, the influences of CIPs content, shear rate, shear strain amplitude and magnetic field on the energy dissipation density of MRG were analyzed. The results showed the magneto-induced damping performance of MRG is highly relevant to the CIPs content and magnetic field,i.e.the magneto-induced enhancement of energy dissipation density of MRG with 60% CIPs content could reach up to 104 900% when the external magnetic strength increases to 391 kA m(-1). Furthermore, the related mechanisms, from the perspective of microstructure, were proposed to qualitatively explain the various mechanical phenomena occurring in shear stress and normal force.
机译:磁流变凝胶(MRG)是一种主要由软磁颗粒和聚氨酯组成的磁敏智能材料,其可以减少甚至避免MR流体中出现的严重沉降问题。在这项工作中,分别研究了准静态单调和循环载荷下MRG的流变性能,具有大变形的循环载荷。结果可以为通常经过准静态加载的MR器件的设计提供有效指导。首先,通过将羰基铁颗粒(CIP)与聚氨酯基质混合来制造MRG。然后,测试并讨论了MRG的时间和磁场的法向力的变化。此外,分析了CIPS含量,剪切速率,剪切应变幅度和磁场对MRG的能量耗散密度的影响。结果表明,MRG的磁诱导的阻尼性能与CIPS含量和磁场高度相关,Iethe磁诱导的磁化能量耗散增强MRG的磁性耗散密度,当外部磁性时达到60%的CIPS含量可达104.900%。强度增加到391 ka m(-1)。此外,提出了从微观结构的角度来看的相关机制以定性地解释剪切应力和正常力发生的各种机械现象。

著录项

  • 来源
    《RSC Advances 》 |2020年第53期| 共14页
  • 作者单位

    Nanjing Univ Sci &

    Technol Sch Mech Engn Nanjing 210094 Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Mech Engn Nanjing 210094 Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Mech Engn Nanjing 210094 Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Mech Engn Nanjing 210094 Peoples R China;

    Nanjing Univ Sci &

    Technol Sch Mech Engn Nanjing 210094 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号