...
首页> 外文期刊>RSC Advances >Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures
【24h】

Comprehensively durable superhydrophobic metallic hierarchical surfaces via tunable micro-cone design to protect functional nanostructures

机译:可调谐微锥设计的全面耐用的超疏水金属等级曲面,以保护功能纳米结构

获取原文
获取原文并翻译 | 示例

摘要

Superhydrophobic surfaces have been intensively investigated in recent years. However, their durability remains a major challenge before superhydrophobic surfaces can be employed in practice. Although various works have focused on overcoming this bottleneck, no single surface has ever been able to achieve the comprehensive durability (including tangential abrasion durability, dynamic impact durability and adhesive durability) required by stringent industrial requirements. Within the hierarchical structures developed for superhydrophobicity in typical plants or animals by natural evolution, microstructures usually provide mechanical stability, strength and flexibility to protect functional nanostructures to enable high durability. However, this mechanism for achieving high durability is rarely studied or reported. We employed an ultrafast laser to fabricate micro/nanohierarchical structures on metal surfaces with tunable micro-cones and produced abundant nanostructures. We then systematically investigated their comprehensive mechanical durability by fully utilizing the protective effect of the microstructures on the functional nanostructures via the tunable design of micro-cones. We confirm that the height and spatial period of the microstructures were crucial for the tangential abrasion durability and dynamic impact durability, respectively. We finally fabricated optimized superhydrophobic tungsten hierarchical surfaces, which could withstand 70 abrasion cycles, 28 min of solid particle impact or 500 tape peeling cycles to retain contact angles of greater than 150 degrees and sliding angles of less than 20 degrees, which demonstrated exceptional comprehensive durability. The comprehensive durability, in particular the dynamic impact durability and adhesive durability, are among the best published results. This research clarifies the mechanism whereby the microstructures effectively protected the functional nanostructures to achieve high durability of the superhydrophobic surfaces and is promising for improving the durability of superhydrophobic surfaces and thus for practical applications.
机译:超疏水表面在最近几年进行了深入调查。然而,其耐用性仍超疏水表面可以在实践中采用面前的一大挑战。虽然各项工作都集中在克服这一瓶颈,没有单一的表面至今没有人能够达到全面的耐久性(包括切线磨损耐用性,动态冲击的耐用性和粘合持久性)通过严格的工业要求所需。在对自然进化的典型植物或动物超疏水开发的层次结构,微观结构通常提供机械稳定性,强度和柔韧性,保护功能的纳米结构,以实现高耐久性。然而,这一机制实现高耐久性研究很少或报告。我们采用的超快激光来制造微/ nanohierarchical结构上具有可调谐微锥的金属表面和产生丰富的纳米结构。然后,我们通过微锥的可调设计,充分利用在功能纳米微结构的保护作用,系统地研究了其综合机械耐久性。我们确认,高度和微观结构的空间周期分别为分别切耐磨耐用性和动态冲击的耐用性,是至关重要的。我们终于制造的优化的超疏水钨分层表面,其可以承受70个磨损循环的固体颗粒冲击28分钟或500个胶带剥离循环以保持大于150度的接触角和小于20度的滑动角,其表现出优异的综合耐久性。综合耐用性,尤其是动态冲击的耐用性和粘合持久性,是最好的公布结果中。该研究阐明了机制,使微观结构有效保护功能的纳米结构,以实现超疏水表面的高耐久性和有希望为提高超疏水表面的耐用性,从而为实际应用。

著录项

  • 来源
    《RSC Advances》 |2018年第12期|共12页
  • 作者单位

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

    Tsinghua Univ Laser Mat Proc Res Ctr Sch Mat Sci &

    Engn Beijing 100084 Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号