...
首页> 外文期刊>RSC Advances >Comparative conformational analyses and molecular dynamics studies of glycylglycine methyl ester and glycylglycine N-methylamide
【24h】

Comparative conformational analyses and molecular dynamics studies of glycylglycine methyl ester and glycylglycine N-methylamide

机译:糖甘氨酸甲酯和甘甘甘氨酸N-甲基酰胺的比较构象分析及分子动力学研究

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Compared to their amide analogs, peptidic esters have a lower propensity for intramolecular hydrogen bonding, and thus most likely quite different stable geometries. On the other hand, their similarity and facile conversion to peptides has led to their broad use in synthetic and biological applications. This dichotomy creates a need to understand their conformational properties. Here, we study the geometries of glycylglycine methyl ester (GGMe, the simplest dipeptide ester) and its amide counterpart (GGAm) using density functional methods. The optimized conformational states were analysed in gas phase and also using a dielectric continuum aqueous phase model. In addition, molecular dynamics studies were carried out to explore effects of molecular water solvation on structure and conformational flexibility. The two atom change, from amide to ester, results in significantly different conformational profiles and solvation characteristics. In gas phase calculations, the strength of the CO-HN (3/1) intramolecular hydrogen bond in GGAm determines its minimum energy conformation, while GGMe is extended; cis-geometries are more energetic by 6 or 5 kcal mol(-1) for the two molecules, respectively. The addition of a continuum dielectric to model an aqueous phase environment weakens hydrogen bonding such that the intramolecular H-bonds are replaced by geometries with less internal strain and more ideal chemical topologies. As a further consequence of the electrostatic shielding, the relative energies of the cis-geometries are reduced by more than half. Molecular dynamics simulations predict GGAm to be more flexible and more extensively solvated than GGMe. Roughly 40% of the increased solvation is due to the additional hydrogen bond donor NH group of the amide; the rest is due to increased hydrogen bonding to the amide oxygen. These analyses of the solvent dependent structural characteristics of simple peptides and peptide esters provide a basis for understanding and design applications in biological recognition, drug design, and synthetic chemistry.
机译:与其酰胺类似物相比,肽酯具有较低的分子内氢键键倾向,因此很可能是非常不同的稳定几何形状。另一方面,它们的相似性和容易转化对肽导致它们广泛使用的合成和生物应用。这种二分法创造了需要了解他们的构象性质。在这里,我们研究甘氨酰甘氨酸甲酯(GGMe,最简单的二肽酯)和它的酰胺对应物(GGAm)的使用密度泛函方法的几何形状。在气相中分析优化的构象状态,并使用介电连续素水相模型分析。此外,进行了分子动力学研究,以探讨分子水溶剂对结构和构象柔韧性的影响。从酰胺到酯的两个原子改变导致显着不同的构象谱和溶剂化特征。在气相计算中,GGAM中的CO-HN(3/1)分子内氢键的强度决定了其最小能量构象,而GGME延长; CIS-几何形状分别为两种分子的6或5kcal(-1)更具活力。加入一个连续的电介质的建模的水相环境中减弱氢键,使得分子内氢键通过用较少的内部应变,更理想的化学拓扑几何形状代替。作为静电屏蔽的进一步后果,CIS-几何形状的相对能量减小了一半以上。分子动力学模拟预测GGAM比GGME更柔韧,更广泛地溶解。大约40%的增加的溶剂是由于酰胺的另外的氢键供体NH组;其余的是由于氢键与酰胺氧的增加。这些简单肽和肽酯的溶剂依赖性结构特征的分析为生物识别,药物设计和合成化学的理解和设计应用提供了基础。

著录项

  • 来源
    《RSC Advances》 |2018年第8期|共9页
  • 作者单位

    UiT Arctic Univ Norway Dept Chem N-9037 Tromso Norway;

    UiT Arctic Univ Norway Dept Chem N-9037 Tromso Norway;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号