首页> 外文期刊>Langmuir: The ACS Journal of Surfaces and Colloids >Capillary Flow with Evaporation in Open Rectangular Microchannels
【24h】

Capillary Flow with Evaporation in Open Rectangular Microchannels

机译:毛细血管流动在开放矩形微通道中蒸发

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Numerous applications rely upon capillary flow in microchannels for successful operation including lab-on-achip devices, porous media flows, and printed electronics manufacturing. Open microchannels often appear in these applications, and evaporation of the liquid can significantly affect its flow. In this work, we develop a Lucas-Washburntype one-dimensional model that incorporates the effects of concentration-dependent viscosity and uniform evaporation on capillary flow in channels of a rectangular cross section. The model yields predictions of the time evolution of the liquid front down the length of the microchannel. For the case where evaporation is absent, prior studies have demonstrated better agreement between model predictions and experimental observations in low-viscosity liquids when using a no-slip rather than a no-stress boundary condition at the upper liquid-air interface. However, flow visualization experiments conducted in this work suggest the absence of a rigidified liquid-air interface. The use of the no-stress condition results in overestimation of the time evolution of the liquid front, which appears to be due to underestimation of the viscous forces from (i) the upper and front meniscus morphology, (ii) dynamic contact angle effects, and (iii) surface roughness, none of which are accounted for in the model. When high-viscosity liquids are considered, the large bulk viscosity is found to suppress these factors, resulting in better agreement between model predictions using the no-stress condition and experiments. Model predictions are also compared to prior experiments involving poly(vinyl alcohol) in the presence of evaporation by using the evaporation rate as a fitting parameter. Scaling relationships obtained from the model for the dependence of the final liquid-front position and total flow time on the channel dimensions and rate of uniform evaporation are found to be in good agreement with experimental observations.
机译:许多应用依赖于微通道的毛细管流动,以成功运行,包括实验室内的设备,多孔介质流动和印刷电子制造。打开微通道通常出现在这些应用中,液体的蒸发可以显着影响其流量。在这项工作中,我们开发了一种lecas-washburntype一维模型,其掺入浓度依赖性粘度和均匀蒸发对矩形横截面通道中的毛细血管流动的影响。该模型在微通道的长度下,产生了液体前沿的时间演化的预测。对于蒸发不存在的情况,当使用下液 - 空气界面处的无应力边界条件时,先前的研究在模型预测和低粘度液体中的实验观察中表现出更好的一致性。然而,在本工作中进行的流动可视化实验表明不存在刚性的液体空气界面。使用No-Regress条件导致液体前线的时间展现的高估,这似乎是由于从(i)的粘性力的低估和前弯月面形态,(ii)动态接触角效应, (iii)表面粗糙度,其中没有其中占该模型中的。当考虑高粘度液体时,发现大量粘度抑制了这些因素,导致使用空调条件和实验的模型预测之间更好地达成一致。还将模型预测与涉及聚(乙烯醇)在蒸发存在下作为配合参数的蒸发速率存在的现有实验。从模型中获得的用于依赖于最终液体前位置的依赖性和通道尺寸上的总流量时间和均匀蒸发速率的缩放关系,与实验观察结果良好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号