首页> 外文期刊>Nucleic Acids Research >Rolling circle amplification shows a sinusoidal template length-dependent amplification bias
【24h】

Rolling circle amplification shows a sinusoidal template length-dependent amplification bias

机译:滚动圆放大显示正弦模板长度依赖性放大偏压

获取原文
获取原文并翻译 | 示例
           

摘要

Biophysical properties of DNA such as its longitudinal and torsional persistence length govern many processes and phenomena in biology, DNA nanotechnology and biotechnology. It has, for example, long been known that the circularization efficiency of short DNA fragments shows a periodic pattern where fragments with integer helical turns circularize much more efficiently than those with odd helical half turns due to stronger stacking of duplex ends. Small DNA circles can serve as templates for rolling circle amplification (RCA), which is a common and extremely robust amplification mechanism for nucleic acids. We discovered a strong template length-dependent amplification efficiency bias of RCA with the same periodicity as B-DNA. However, stacking cannot explain the mechanism behind this bias as the presence of the polymerase in the bifurcation fork inhibits base stacking of ends. Instead, coarse-grained molecular dynamics simulations imply that different amplification efficiencies come from a varying fraying probability of the last two downstream base pairs. We conclude that an increased strain-promoted fraying probability can increase the polymerization rate compared to a relaxed template.
机译:DNA的生物物理性质,如纵向和扭转持续长度的诸如生物学,DNA纳米技术和生物技术的许多过程和现象。例如,已经众所周知,短DNA片段的圆形化效率表示周期性的图案,其中具有整数螺旋转动的碎片比具有奇怪的螺旋半转动的碎片,由于双相端的较强的堆叠而具有奇怪的螺旋半圈。小型DNA圆圈可用作滚动圆扩增(RCA)的模板,这是核酸的常见且极其稳健的放大机制。我们发现RCA的强大模板长度依赖性扩增效率偏差,与B-DNA相同。然而,由于分叉叉中的聚合酶存在抑制底座末端,堆叠不能解释该偏差背后的机制。相反,粗粒化分子动力学模拟意味着不同的放大效率来自最后两个下游碱基对的不同磨损概率。我们得出结论,与松弛模板相比,增加的应变促进的磨损概率可以增加聚合速率。

著录项

  • 来源
    《Nucleic Acids Research》 |2018年第2期|共8页
  • 作者单位

    Tech Univ Dresden Ctr Adv Elect Dresden Cfaed D-01062 Dresden Germany;

    Tech Univ Dresden Ctr Adv Elect Dresden Cfaed D-01062 Dresden Germany;

    Univ Oxford Dept Chem Phys &

    Theoret Chem Lab South Parks Rd Oxford OX1 3QZ England;

    Univ Oxford Dept Chem Phys &

    Theoret Chem Lab South Parks Rd Oxford OX1 3QZ England;

    Tech Univ Dresden Ctr Adv Elect Dresden Cfaed D-01062 Dresden Germany;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 生物化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号