...
首页> 外文期刊>Neuroscience: An International Journal under the Editorial Direction of IBRO >STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons
【24h】

STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons

机译:STDP允许单一巧合探测器神经元进行近距离的时空尖峰图案检测

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the membrane time constant tau. Using a leaky integrate-and-fire (LIF) neuron with homogeneous Poisson input, we computed this optimum analytically. We found that a relatively small tau (at most a few tens of ms) is usually optimal, even when the pattern is much longer. This is somewhat counter-intuitive as the resulting detector ignores most of the pattern, due to its fast memory decay. Next, we wondered if spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimum. We simulated a LIF equipped with additive STDP, and repeatedly exposed it to a given input spike pattern. As in previous studies, the LIF progressively became selective to the repeating pattern with no supervision, even when the pattern was embedded in Poisson activity. Here we show that, using certain STDP parameters, the resulting pattern detector is optimal. These mechanisms may explain how humans learn repeating sensory sequences. Long sequences could be recognized thanks to coincidence detectors working at a much shorter timescale. This is consistent with the fact that recognition is still possible if a sound sequence is compressed, played backward, or scrambled using 10-ms bins. Coincidence detection is a simple yet powerful mechanism, which could be the main function of neurons in the brain.
机译:存在重复的时空尖峰图案并携带信息。如何通过下游神经元提取该信息尚不清楚。在这里,我们理论上研究了单个电池可以检测到给定尖峰图案的程度以及所以最佳参数的程度,特别是膜时间常数tau。使用带有均匀泊松输入的泄漏整合和火(LIF)神经元,我们在分析上计算了这一最佳选择。我们发现,即使在图案更长的时间里,也发现相对较小的Tau(最多几十个MS)通常是最佳的。由于其快速记忆衰减,这与所得探测器忽略了大部分图案时,这有点反向直观。接下来,我们想知道尖峰定时依赖的可塑性(STDP)可以使神经元能够达到理论最佳。我们模拟配备有添加剂STDP的LIF,并将其反复暴露于给定的输入尖峰图案。与之前的研究一样,即使在泊松活动中嵌入模式时,LEF逐渐变成了没有监督的重复模式。在这里,我们表明,使用某些STDP参数,所得到的图案检测器是最佳的。这些机制可以解释人们如何学习重复感觉序列。由于巧合探测器在更短的时间尺寸更短的探测器,可以识别长序列。这与识别仍然可以进行识别,如果将声序压缩,则向后播放,或者使用10-ms箱扰乱。巧合检测是一种简单而强大的机制,这可能是大脑中神经元的主要功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号