首页> 美国卫生研究院文献>Elsevier Sponsored Documents >STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons
【2h】

STDP Allows Close-to-Optimal Spatiotemporal Spike Pattern Detection by Single Coincidence Detector Neurons

机译:STDP允许通过单个巧合检测器神经元检测接近最佳的时空峰值模式

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Repeating spatiotemporal spike patterns exist and carry information. How this information is extracted by downstream neurons is unclear. Here we theoretically investigate to what extent a single cell could detect a given spike pattern and what the optimal parameters to do so are, in particular the membrane time constant τ. Using a leaky integrate-and-fire (LIF) neuron with homogeneous Poisson input, we computed this optimum analytically. We found that a relatively small τ (at most a few tens of ms) is usually optimal, even when the pattern is much longer. This is somewhat counter-intuitive as the resulting detector ignores most of the pattern, due to its fast memory decay. Next, we wondered if spike-timing-dependent plasticity (STDP) could enable a neuron to reach the theoretical optimum. We simulated a LIF equipped with additive STDP, and repeatedly exposed it to a given input spike pattern. As in previous studies, the LIF progressively became selective to the repeating pattern with no supervision, even when the pattern was embedded in Poisson activity. Here we show that, using certain STDP parameters, the resulting pattern detector is optimal. These mechanisms may explain how humans learn repeating sensory sequences. Long sequences could be recognized thanks to coincidence detectors working at a much shorter timescale. This is consistent with the fact that recognition is still possible if a sound sequence is compressed, played backward, or scrambled using 10-ms bins. Coincidence detection is a simple yet powerful mechanism, which could be the main function of neurons in the brain.
机译:存在重复的时空尖峰模式并携带信息。下游神经元如何提取此信息尚不清楚。在这里,我们从理论上研究单个细胞在多大程度上可以检测到给定的尖峰模式,以及这样做的最佳参数,尤其是膜时间常数 τ 。使用具有均匀泊松输入的泄漏积分与发射(LIF)神经元,我们通过分析计算出了该最优值。我们发现相对较小的 τ (最多几十毫秒)通常是最佳的,即使模式更长。这有点违反直觉,因为最终的检测器由于其快速的存储器衰减而忽略了大多数模式。接下来,我们想知道是否依赖于尖峰时序的可塑性(STDP)可以使神经元达到理论上的最佳值。我们模拟了配有添加剂STDP的LIF,并将其反复暴露于给定的输入尖峰模式。与以前的研究一样,即使LIF嵌入到Poisson活动中,LIF也会逐渐对重复模式产生选择性,而无需监督。在这里,我们表明,使用某些STDP参数,得到的模式检测器是最佳的。这些机制可以解释人类如何学习重复的感官序列。由于巧合检测器工作时间短得多,因此可以识别长序列。这与以下事实一致:如果使用10毫秒的bin对声音序列进行压缩,向后播放或加扰,则仍然可以识别。符合检测是一种简单但功能强大的机制,它可能是大脑神经元的主要功能。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号