首页> 外文期刊>New Journal of Chemistry >N-Doped graphene with anchored ZnFe2O4 nanostructures as an anode for lithium ion batteries with enhanced reversible capacity and cyclic performance
【24h】

N-Doped graphene with anchored ZnFe2O4 nanostructures as an anode for lithium ion batteries with enhanced reversible capacity and cyclic performance

机译:N掺杂的石墨烯,具有锚固ZnFe2O4纳米结构,作为锂离子电池的阳极,具有增强的可逆容量和循环性能

获取原文
获取原文并翻译 | 示例
       

摘要

The challenges in developing more efficient lithium ion (Li-ion) batteries as a power source has been the subject of tremendous research due to the increase in demand for high-power unplugged electronics. Unlike commercial anodes, hierarchically decorated ZnFe _(2) O _(4) on N-doped graphene as an anode exhibits state-of-the-art electrochemical properties. Even after 100 cycles at a current rate of 0.1, 0.2 and 1C, the anode displays high specific capacities of 1859, 982, and 740 mA h g ~(?1) , respectively, with a capacity retention close to 100%. N-Doping on the graphene sheet enhances the electrical contact between the particles, which is expected to be the reason for the enhanced areal capacity and cyclic stability of the anode. In addition, the conductive graphene framework prevents surface migration of the nanoparticles and their agglomeration upon cycling, thus creating a buffer space for charge conduction and the transport of Li ions. The N-doped graphene/ZnFe _(2) O _(4) nanocomposite anode has superior performance than the routinely used pristine anode in Li-ion batteries.
机译:由于高功率拔出电子设备的需求增加,开发更高效的锂离子(锂离子)电池作为电源的主题是巨大的研究。与商业阳极不同,在N掺杂石墨烯上的分层装饰ZnFe _(2)O _(4)作为阳极表现出最先进的电化学性质。即使在电流率为0.1,0.2和1c的速率之后,阳极也分别显示出1859,982和740mA H g〜(α1)的高比容量,容量保持接近100%。在石墨烯片上的N掺杂增强了颗粒之间的电接触,这预计将是增强的面积容量和阳极循环稳定性的原因。另外,导电石墨烯框架防止纳米颗粒的表面迁移及其在循环时的附聚,从而产生缓冲空间用于电荷传导和Li离子的转运。 N-掺杂的石墨烯/ ZnFe _(2)O _(4)纳米复合阳极具有优于锂离子电池中的常规使用原始阳极的优异性能。

著录项

  • 来源
    《New Journal of Chemistry》 |2018年第20期|共7页
  • 作者单位

    Department of Nanoscience and Technology Bharathiar University;

    Centre for Automotive Energy Materials International Advanced Research Center for Powder Metallurgy and New Materials (ARCI) Taramani;

    Centre for Automotive Energy Materials International Advanced Research Center for Powder Metallurgy and New Materials (ARCI) Taramani;

    Department of Nanoscience and Technology Bharathiar University;

    Department of Nanoscience and Technology Bharathiar University;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号