...
首页> 外文期刊>New Journal of Chemistry >Mechanistic insights into the catalytic carbonyl hydrosilylation by cationic [CpM(CO)(2)(IMes)](+) (M = Mo, W) complexes: the intermediacy of eta(1)-H(Si) metal complexes
【24h】

Mechanistic insights into the catalytic carbonyl hydrosilylation by cationic [CpM(CO)(2)(IMes)](+) (M = Mo, W) complexes: the intermediacy of eta(1)-H(Si) metal complexes

机译:通过阳离子[CPM(CO)(2)(2)(2)(2)(2)(2)(2))(M = Mo,W)复合物中催化羰基氢化硅烷化物的机械洞察:ETA(1)-H(Si)金属配合物的中间体

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The mechanism of carbonyl hydrosilylation by cationic cyclopentadienyl molybdenum/tungsten complexes, [CpM(CO)(2)(IMes)](+) (M = Mo, W), has been investigated using density functional calculations. Earlier studies by Bullock and co-workers proposed that the ionic mechanism with the intermediacy of oxidative addition complexes of Mo(IV)/W(IV) silyl hydrides accounts for the catalytic reactions. The activation energies of the turnover-limiting steps along Bullock's proposed ionic catalytic cycles are calculated to be moderate, at 24.2 (Mo) and 20.6 (W) kcal mol(-1), respectively. However, our calculations support an alternative ionic mechanism which features a S(N)2@Si transition state as the preferred reaction pathway instead of the ionic mechanism proposed by Bullock. The ionic S(N)2-type mechanistic pathway is initiated by the silane end-on coordination on metal centers, forming eta(1)-H(Si) Mo/W complexes. Then, the carbonyl oxygen backside attacks the eta(1)-silane metal adducts to prompt the cleavage of Si-H bond via S(N)2@Si transition states, giving silyl carbenium ion and metal hydrides. The rate-determining steps along the ionic S(N)2-type pathways correspond to heterolytic cleavage of the eta(1) coordinated Si-H bond and are calculated to be quite low, at 8.7 (Mo) and 7.4 (W) kcal mol(-1), respectively. In this regard, our calculations reveal that silane end-on coordination on the metal center leads to stable eta(1)-H(Si) Mo/W adducts, which are more stable, by 10.7 and 5.1 kcal mol(-1), than the Mo(IV)/W(IV) silyl hydrides. Furthermore, the eta(1)-H(Si) Mo/W adducts represent the intermediates of catalytic hydrosilylation reactions by two cationic molybdenum/tungsten complexes.
机译:通过密度函数计算研究了阳离子环戊二烯基钼/钨络合物,[CPM(CO)(2)(2)(IMES)](+)(+)(M = MO,W)的机理。鲍克和同事的早期研究提出了具有Mo(IV)/ W(IV)甲硅烷基的氧化添加络合物中间体的离子机制备为催化反应。沿着Bullock所提出的离子催化循环的营收限制步骤的激活能量计算为中等,分别为24.2(Mo)和20.6(w)kcal摩尔(-1)。然而,我们的计算支持替代的离子机制,其特征是S(n)2 @ Si过渡状态作为优选的反应途径,而不是Billock提出的离子机制。离子S(n)2型机械途径由硅烷对金属中心的协调引发,形成ETA(1)-H(Si)Mo / W络合物。然后,羰基反侧攻击ETA(1) - 硅烷金属加合物以提示通过S(n)2〜2〜Si过渡态的Si-H键的切割,得到甲硅烷基碳离子和金属氢化物。沿着离子S(N)2型的途径对应于配位的Si-H键的ETA(1)的异裂,并计算为相当低,在8.7(Mo)和7.4(W)千卡的速率决定步骤分别为mol(-1)。在这方面,我们的计算揭示了金属中心上的硅烷端部的协调导致稳定的ETA(1)-H(Si)Mo / W加合物,其更稳定,增进10.7和5.1 kcal mol(-1),比Mo(iv)/ w(iv)甲硅烷基氢化物。此外,ETA(1)-H(Si)Mo / W加合物代表两个阳离子钼/钨配合物的催化氢化硅烷化反应的中间体。

著录项

  • 来源
    《New Journal of Chemistry》 |2018年第7期|共10页
  • 作者单位

    Nanjing Normal Univ Jiangsu Collaborat Innovat Ctr Biomed Funct Mat Jiangsu Prov Key Lab NSLSCS Jiangsu Key Lab Biomed Mat Sch Chem &

    Mat Sci Nanjing 210046 Jiangsu Peoples R China;

    Nanjing Normal Univ Jiangsu Collaborat Innovat Ctr Biomed Funct Mat Jiangsu Prov Key Lab NSLSCS Jiangsu Key Lab Biomed Mat Sch Chem &

    Mat Sci Nanjing 210046 Jiangsu Peoples R China;

    Nanjing Normal Univ Jiangsu Collaborat Innovat Ctr Biomed Funct Mat Jiangsu Prov Key Lab NSLSCS Jiangsu Key Lab Biomed Mat Sch Chem &

    Mat Sci Nanjing 210046 Jiangsu Peoples R China;

    Nanjing Normal Univ Jiangsu Collaborat Innovat Ctr Biomed Funct Mat Jiangsu Prov Key Lab NSLSCS Jiangsu Key Lab Biomed Mat Sch Chem &

    Mat Sci Nanjing 210046 Jiangsu Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 化学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号