首页> 外文期刊>Nature reviews Cancer >Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor-Metal Nanorods: Crossover from Auger Recombination to Charge Transfer
【24h】

Charge Carrier Dynamics in Photocatalytic Hybrid Semiconductor-Metal Nanorods: Crossover from Auger Recombination to Charge Transfer

机译:光催化混合半导体 - 金属纳米棒中的电荷载体动力学:从螺旋钻重组到电荷转移的交叉

获取原文
获取原文并翻译 | 示例
           

摘要

Hybrid semiconductor-metal nanoparticles (HNPs) manifest unique, synergistic electronic and optical properties as a result of combining semiconductor and metal physics via a controlled interface. These structures can exhibit spatial charge separation across the semiconductor-metal junction upon light absorption, enabling their use as photocatalysts. The combination of the photocatalytic activity of the metal domain with the ability to generate and accommodate multiple excitons in the semiconducting domain can lead to improved photocatalytic performance because injecting multiple charge carriers into the active catalytic sites can increase the quantum yield. Herein, we show a significant metal domain size dependence of the charge carrier dynamics as well as the photocatalytic hydrogen generation efficiencies under nonlinear excitation conditions. An understanding of this size dependence allows one to control the charge carrier dynamics following the absorption of light. Using a model hybrid semiconductor-metal CdS-Au nanorod system and combining transient absorption and hydrogen evolution kinetics, we reveal faster and more efficient charge separation and transfer under multiexciton excitation conditions for large metal domains compared to small ones. Theoretical modeling uncovers a competition between the kinetics of Auger recombination and charge separation. A crossover in the dominant process from Auger recombination to charge separation as the metal domain size increases allows for effective multiexciton dissociation and harvesting in large metal domain HNPs. This was also found to lead to relative improvement of their photocatalytic activity under nonlinear excitation conditions.
机译:混合半导体 - 金属纳米颗粒(HNP)作为通过受控接口组合半导体和金属物理的结果,表现出独特,协同的电子和光学性质。在光吸收时,这些结构可以在半导体 - 金属连接点上表现出空间电荷分离,使其用作光催化剂。金属结构域的光催化活性具有在半导体结构域中产生和容纳多个激子的能力的组合可以提高光催化性能,因为将多个电荷载体注入活性催化位点可以增加量子产率。在此,我们显示了电荷载体动力学以及非线性激发条件下的光催化氢引发效率的显着金属畴尺寸。对这种尺寸依赖性的理解允许人们在吸收光之后控制电荷载体动力学。使用模型混合半导体 - 金属CDS-AU纳米棒系统并组合瞬态吸收和氢进化动力学,我们揭示了与小型金属域的多曲线激发条件下的更快和更有效的电荷分离和转移。理论建模揭示了螺旋钻重组和电荷分离的动力学之间的竞争。随着金属畴尺寸随着金属畴大小的增加,从螺旋钻重组到电荷分离的主导过程中的交叉允许在大型金属结构域HNP中进行有效的多曲线解离和收获。还发现,在非线性激发条件下导致其光催化活性的相对改善。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号