...
首页> 外文期刊>Nanotechnology >Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces
【24h】

Bending energy penalty enhances the adhesive strength of functional amyloid curli to surfaces

机译:弯曲能量损失增强了官能淀粉样蛋白曲线的粘合强度

获取原文
获取原文并翻译 | 示例

摘要

The functional amyloid curli fiber, a major proteinaceous component of biofilm extracellular matrices, plays an important role in biofilm formation and enterobacteriaceae adhesion. Curli nanofibers exhibit exceptional underwater adhesion to various surfaces, have high rigidity and strong tensile mechanical properties, and thus hold great promise in biomaterials. The mechanisms of how curli fibers strongly attach to surfaces and detach under force remain elusive. To investigate curli fiber adhesion to surfaces, we developed a coarse-grained curli fiber model, in which the protein subunit CsgA (curli specific gene A) self-assembles into the fiber. The coarse-grained model yields physiologically relevant and tunable bending rigidity and persistence length. The force-induced desorption of a single curli fiber is examined using coarse-grained modeling and theoretical analysis. We find that the bending energy penalty arising from high persistence length enhances the resistance of the curli fiber against desorption and thus strengthens the adhesion of the curli fiber to surfaces. The CsgA-surface adhesion energy and the curli fiber bending rigidity both play crucial roles in the resistance of curli fiber against desorption from surfaces. To enable the desorption process, the applied peeling force must overcome both the interfacial adhesion energy and the energy barrier for bending the curli fiber at the peeling front. We show that the energy barrier to desorption increases with the interfacial adhesion energy, however, the bending induced failure of a single curli fiber limits the work of adhesion if the proportion of the CsgA-surface adhesion energy to the CsgA-CsgA cohesive energy becomes large. These results illustrate that the optimal adhesion performance of nanofibers is dictated by the interplay between bending, surface energy and cohesive energy. Our model provides timely insight into enterobacteriaceae adhesion mechanisms as well as future designs of engineered curli fiber based adhesives.
机译:官能淀粉样蛋白卷发纤维是生物膜细胞外基质的主要蛋白质组分,在生物膜形成和肠杆菌粘附中起着重要作用。 Curli纳米纤维对各种表面具有特殊的水下粘附性,具有高刚性和强烈的拉伸力学性能,因此在生物材料中保持了巨大的希望。卷发纤维如何强烈地连接到表面和脱离的机制仍然难以捉摸。为了将Curli纤维粘附到表面,我们开发了一种粗粒粗曲线纤维模型,其中蛋白质亚基CSGA(Curli特异性基因A)自组装成纤维。粗粒模型产生生理相关和可调弯曲刚度和持久长度。使用粗粒化建模和理论分析检查力诱导的单曲线纤维的解吸。我们发现,从高持久性长度产生的弯曲能量损失增强了卷发纤维对解吸的阻力,从而增强了曲线纤维与表面的粘附性。 CSGA表面粘合能量和曲线纤维弯曲刚度既发挥了曲线纤维阻力的关键作用,抵抗表面解吸。为了使解吸过程能够,施加的剥离力必须克服界面粘附能量和用于在剥离前部弯曲曲线纤维的能量屏障。我们表明,如果CSGA-COSGA粘合能量与CSGA-CSGA粘性能量的比例变大,则弯曲诱导的解吸能量障碍随着界面粘附能量而增加,弯曲诱导的抗衰力限制了粘合性的工作。这些结果说明纳米纤维的最佳粘合性能由弯曲,表面能和粘性能量之间的相互作用决定。我们的模型及时了解肠杆菌粘膜粘附机构以及工程曲线纤维的粘合剂的未来设计。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号