首页> 外文期刊>Nanotechnology >Stability investigation of a high number density Pt-1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM
【24h】

Stability investigation of a high number density Pt-1/Fe2O3 single-atom catalyst under different gas environments by HAADF-STEM

机译:通过HAADF-STEM在不同气体环境下的高数密度Pt-1 / Fe2O3单原子催化剂的稳定性研究

获取原文
获取原文并翻译 | 示例
           

摘要

Catalysis by supported single metal atoms has demonstrated tremendous potential for practical applications due to their unique catalytic properties. Unless they are strongly anchored to the support surfaces, supported single atoms, however, are thermodynamically unstable, which poses a major obstacle for broad applications of single-atom catalysts (SACs). In order to develop strategies to improve the stability of SACs, we need to understand the intrinsic nature of the sintering processes of supported single metal atoms, especially under various gas environments that are relevant to important catalytic reactions. We report on the synthesis of high number density Pt-1/Fe2O3 SACs using a facial strong adsorption method and the study of the mobility of these supported Pt single atoms at 250 degrees C under various gas environments that are relevant to CO oxidation, water-gas shift, and hydrogenation reactions. Under the oxidative gas environment, Fe2O3 supported Pt single atoms are stable even at high temperatures. The presence of either CO or H-2 molecules in the gas environment, however, facilitates the movement of the Pt atoms. The strong interaction between CO and Pt weakens the binding between the Pt atoms and the support, facilitating the movement of the Pt single atoms. The dissociation of H-2 molecules on the Pt atoms and their subsequent interaction with the oxygen species of the support surfaces dislodge the surface oxygen anchored Pt atoms, resulting in the formation of Pt clusters. The addition of H2O molecules to the CO or H-2 significantly accelerates the sintering of the Fe2O3 supported Pt single atoms. An anchoring-site determined sintering mechanism is further proposed, which is related to the metal-support interaction.
机译:催化由支持单个金属原子已经证明对于实际应用的巨大潜力由于其独特的催化性质。除非它们被强烈地锚定到所述支撑表面,支撑单原子,但是,是热力学不稳定的,这对用于单原子催化剂(囊)的广泛应用的主要障碍。为了发展战略,以提高囊的稳定性,我们需要了解支持的单一金属原子的烧结工艺的内在本质,尤其是在那些相关的重要催化反应的各种气体环境。我们使用面部很强的吸附方法和这些负载的Pt单原子的迁移率,在250℃下是相关的CO氧化的各种气体环境下的研究上高数量密度的Pt-1 / Fe2O3的囊的综合报告,水煤气变换,和加氢反应。下的氧化性气体环境下,Fe2O3的负载的Pt单原子即使在高温下是稳定的。在气体环境CO或H-2分子的存在,但是,方便的Pt原子的移动。 CO和Pt之间的强相互作用削弱了铂原子与载体之间的结合,有利于在Pt单原子的移动。在Pt原子H-2分子和它们与支撑表面的氧物种随后相互作用的解离撞出表面氧锚定的Pt原子,导致铂簇的形成。加入H 2 O分子与CO或H-2的显著加速的Fe2O3的烧结Pt担单个原子。一个锚定现场确定烧结机构进一步提出,这是关系到金属 - 载体的相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号