...
首页> 外文期刊>Nanotechnology >Maximized lateral inhibition in paired magnetic domain wall racetracks for neuromorphic computing
【24h】

Maximized lateral inhibition in paired magnetic domain wall racetracks for neuromorphic computing

机译:用于神经形态计算的成对磁畴壁跑车中的最大化的横向抑制

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Lateral inhibition is an important functionality in neuromorphic computing, modeled after the biological neuron behavior that a firing neuron deactivates its neighbors belonging to the same layer and prevents them from firing. In most neuromorphic hardware platforms lateral inhibition is implemented by external circuitry, thereby decreasing the energy efficiency and increasing the area overhead of such systems. Recently, the domain wall-magnetic tunnel junction (DW-MTJ) artificial neuron is demonstrated in modeling to be intrinsically inhibitory. Without peripheral circuitry, lateral inhibition in DW-MTJ neurons results from magnetostatic interaction between neighboring neuron cells. However, the lateral inhibition mechanism in DW-MTJ neurons has not been studied thoroughly, leading to weak inhibition only in very closely-spaced devices. This work approaches these problems by modeling current- and field- driven DW motion in a pair of adjacent DW-MTJ neurons. We maximize the magnitude of lateral inhibition by tuning the magnetic interaction between the neurons. The results are explained by current-driven DW velocity characteristics in response to an external magnetic field and quantified by an analytical model. Dependence of lateral inhibition strength on device parameters is also studied. Finally, lateral inhibition behavior in an array of 1000 DW-MTJ neurons is demonstrated. Our results provide a guideline for the optimization of lateral inhibition implementation in DW-MTJ neurons. With strong lateral inhibition achieved, a path towards competitive learning algorithms such as the winner-take-all are made possible on such neuromorphic devices.
机译:横向抑制是神经形态计算中的重要功能,在生物神经元的行为之后建模的是烧制神经元停用其邻居属于同一层并防止它们射击。在大多数神经形态硬件平台中,横向抑制由外部电路实现,从而降低能量效率并增加这种系统的面积开销。最近,在建模中证明了畴壁 - 磁隧道结(DW-MTJ)人工神经元是本质上抑制的。没有外周电路,DW-MTJ神经元中的横向抑制是由相邻神经元细胞之间的磁静互动导致的。然而,DW-MTJ神经元中的横向抑制机制尚未彻底研究,仅在非常紧密间隔的装置中抑制弱抑制。通过在一对相邻的DW-MTJ神经元中建模电流和现场驱动的DW运动来实现这些问题。通过调节神经元之间的磁相互作用,我们通过调节偏离抑制的大小。结果是通过电流驱动的DW速度特性解释响应于外部磁场并通过分析模型量化。还研究了横向抑制强度对器件参数的依赖性。最后,证明了1000dW-MTJ神经元阵列中的横向抑制行为。我们的结果提供了DW-MTJ神经元在横向抑制实施方针的指导。通过实现强烈的横向抑制,可以在这种神经形状装置上实现竞争学习算法,例如胜利的学习算法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号