首页> 外文期刊>Nanotechnology >Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics
【24h】

Extended memory lifetime in spiking neural networks employing memristive synapses with nonlinear conductance dynamics

机译:庞大的内存寿命在尖峰神经网络中采用非线性电导动态的忆阻突触

获取原文
获取原文并翻译 | 示例
       

摘要

Spiking neural networks (SNNs) employing memristive synapses are capable of life-long online learning. Because of their ability to process and classify large amounts of data in real-time using compact and low-power electronic systems, they promise a substantial technology breakthrough. However, the critical issue that memristor-based SNNs have to face is the fundamental limitation in their memory capacity due to finite resolution of the synaptic elements, which leads to the replacement of old memories with new ones and to a finite memory lifetime. In this study we demonstrate that the nonlinear conductance dynamics of memristive devices can be exploited to improve the memory lifetime of a network. The network is simulated on the basis of a spiking neuron model of mixed-signal digital-analogue sub-threshold neuromorphic CMOS circuits, and on memristive synapse models derived from the experimental nonlinear conductance dynamics of resistive memory devices when stimulated by trains of identical pulses. The network learning circuits implement a spike-based plasticity rule compatible with both spike-timing and rate-based learning rules. In order to get an insight on the memory lifetime of the network, we analyse the learning dynamics in the context of a classical benchmark of neural network learning, that is hand-written digit classification. In the proposed architecture, the memory lifetime and the performance of the network are improved for memristive synapses with nonlinear dynamics with respect to linear synapses with similar resolution. These results demonstrate the importance of following holistic approaches that combine the study of theoretical learning models with the development of neuromorphic CMOS SNNs with memristive devices used to implement lifelong on-chip learning.
机译:使用Memristive突触的尖峰神经网络(SNNS)能够实现终身在线学习。由于他们能够使用紧凑型和低功率电子系统实时处理和分类大量数据,因此它们承诺了实质性的技术突破。但是,基于Memitristor的SNNS必须面临的关键问题是由于突触元素的有限分辨率导致其内存容量的基本限制,这导致更换具有新的旧存储器和有限的内存寿命。在这项研究中,我们证明可以利用存储器设备的非线性电导动态来改善网络的内存寿命。该网络是基于混合信号数字 - 模拟亚阈值神经晶体CMOS电路的尖峰神经元模型来模拟的,并且在由相同脉冲的火车刺激时,从电阻存储器件的实验非线性电导动态导出的忆阻模型。网络学习电路实现了与峰值定时和基于速率的学习规则兼容的峰值的可塑性规则。为了了解网络的内存寿命,我们在神经网络学习的经典基准中分析了学习动态,即手写的数字分类。在所提出的体系结构中,对于具有相对于具有相似分辨率的线性突触的非线性动态的忆内动力学来改进内存生存时间和网络性能。这些结果表明,随着用于实施终身器件的椎间盘模型的神经形态CMOS SNNS的开发,将理论学习模型的研究与用于实施终身的片上学习的忆廓装置的开发,这些结果表明了结合理论学习模型的研究。

著录项

  • 来源
    《Nanotechnology》 |2019年第1期|共12页
  • 作者单位

    CNR IMM Unit Agrate Brianza Via C Olivetti 2 I-20864 Agrate Brianza Italy;

    Politecn Torino Dipartimento Sci Applicata &

    Tecnol DISAT Corso Duca Abruzzi 24 I-10129 Turin Italy;

    Univ Zurich Inst Neuroinformat Winterthurerstr 190 CH-8057 Zurich Switzerland;

    CNR IMM Unit Agrate Brianza Via C Olivetti 2 I-20864 Agrate Brianza Italy;

    CNR IMM Unit Agrate Brianza Via C Olivetti 2 I-20864 Agrate Brianza Italy;

    Politecn Torino Dipartimento Sci Applicata &

    Tecnol DISAT Corso Duca Abruzzi 24 I-10129 Turin Italy;

    Univ Zurich Inst Neuroinformat Winterthurerstr 190 CH-8057 Zurich Switzerland;

    CNR IMM Unit Agrate Brianza Via C Olivetti 2 I-20864 Agrate Brianza Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;
  • 关键词

    RRAM; memristor; neuromorphic; spiking neural network; memory lifetime; ReRAM; HfO2;

    机译:RRAM;忆耳;神经形态;尖峰神经网络;记忆寿命;雷兰;HFO2;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号