...
首页> 外文期刊>Nano letters >Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon
【24h】

Tip-Enhanced Raman Excitation Spectroscopy (TERES): Direct Spectral Characterization of the Gap-Mode Plasmon

机译:尖端增强拉曼励磁光谱(TERES):间隙模式等离子体的直接光谱表征

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

The plasmonic properties of tip-substrate composite systems are of vital importance to near-field optical spectroscopy, in particular tip-enhanced Raman spectroscopy (TERS), which enables operando studies of nanoscale chemistry at a single molecule level. The nanocavities formed in the tip-substrate junction also offer a highly tunable platform for studying field-matter interactions at the nanoscale. While the coupled nanoparticle dimer model offers a correct qualitative description of gap-mode plasmon effects, it ignores the full spectrum of multipolar tip plasmon modes and their interaction with surface plasmon polariton (SPP) excitation in the substrate. Herein, we perform the first tip-enhanced Raman excitation spectroscopy (TERES) experiment and use the results, both in ambient and aqueous media, in combination with electrodynamics simulations, to explore the plasmonic response of a Au tip-Au substrate composite system. The gap-mode plasmon features a wide spectral window corresponding to a host of tip plasmon modes interacting with the plasmonic substrate. Simulations of the electric field confinement demonstrate that optimal spatial resolution is achieved when a hybrid plasmon mode that combines a multipolar tip plasmon and a substrate SPP is excited. Nevertheless, a wide spectral window over 1000 nm is available for exciting the tip plasmon with high spatial resolution, which enables the simultaneous resonant detection of different molecular species. This window is robust as a function of tip-substrate distance and tip radius of curvature, indicating that many choices of tips will work, but it is restricted to wavelengths longer than similar to 600 nm for the Au tip-Au substrate combination. Other combinations, such as Ag tip-Ag substrate, can access wavelengths as low as 350 nm.
机译:尖端基板复合体系的等离子体性能至关重要近场光谱,特别是尖端增强的拉曼光谱(TERS),其能够在单个分子水平下实现纳米级化学的Operando研究。在尖端基板结中形成的纳米盖也提供了一种高度可调的平台,用于研究纳米级的场物相互作用。虽然耦合的纳米粒子二聚体模型提供了差距模式等离子体效应的正确定性描述,但它忽略了在基板中与表面等离子体Polariton(SPP)激发的全光谱和它们与表面等离子体极性(SPP)激发的相互作用。这里,我们进行第一尖端增强的拉曼激发光谱(TERES)实验,并在环境和含水介质中使用结果,与电动介质相结合,以探讨Au尖端-Au基板复合系统的等离子体响应。间隙模式等离子体具有与与等离子体基板相互作用的尖端等离子体模式相对应的宽光谱窗口。电场监禁的模拟表明,当组合多极尖端等离子体和基板SPP的混合等离子体模式被激发时,实现了最佳空间分辨率。然而,1000nm以上的宽光谱窗口可用于激励具有高空间分辨率的尖端等离子体,这使得能够同时共振检测不同的分子物种。该窗口作为尖端基板距离和尖端曲率半径的函数是稳健的,表明提示的许多选择将有效,但它限于相对于Au尖端衬底组合的600nm长度的波长。其他组合,例如Ag Tip-Ag衬底,可以进入低至350nm的波长。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号