...
首页> 外文期刊>Nano letters >Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer
【24h】

Core/Shell Bacterial Cables: A One-Dimensional Platform for Probing Microbial Electron Transfer

机译:核心/壳体细菌电缆:用于探测微生物电子转移的一维平台

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Extracellular electron transfer (EET) from electrochemically active bacteria (EAB) plays a critical role in renewable bioelectricity harvesting through microbial fuel cells (MFC). Comprehensive interpretation and interrogation of EET mechanisms can provide valuable information to enhance MFC performance, which however are still restricted by the intrinsic complexity of natural biofilm. Here, we design core/shell EAB-encapsulating cables as a one-dimensional model system to facilitate EET studies, where the local microenvironments can be rationally controlled to establish structure function correlations with full biological relevance. In particular, our proof-of-concept studies with Shewanella loihica PV-4 (S. loihica) encapsulating cables demonstrate the precise modulation of fiber diameters (from 6.9 +/- 1.1 to 25.1 +/- 2.4 mu m) and bacteria interactions, which are found to play important roles in programming the formation of different intercellular structures as revealed by in situ optical and ex situ electron microscopic studies. As-formed bacterial cables exhibit conductivity in the range of 2.5-16.2 mS.cm(-1), which is highly dependent on the bacteria density as well as the nature and number of intercellular interconnections. Under electron-acceptor limited conditions, the closely contacted bacteria promote the development of high density self-assembling nanomaterials at cellular interfaces which can be directly translated to the increase of EET efficiency (16.2 mS.cm(-1)) as compared with isolated, remotely connected bacteria samples (6.4 mS.cm(-1)). Introducing exceeding concentrations of soluble electron acceptors during cell culture, however, substantially suppresses the formation of cellular interconnections and leads to significantly reduced conductivity (2.5 mS.cm(-1)). Frequency-dependent measurements further reveal that EET of EAB networks share similar characteristics to electron hopping in conductive polymer matrix, including dominant direct current
机译:从电化学活性细菌(EAB)细胞外电子传递(EET)起着通过微生物燃料电池(MFC)在可再生的生物电收获了关键作用。 EET的机制综合解释和审讯可以提供有价值的信息,以提高性能MFC,然而仍然由自然生物膜的固有的复杂性的限制。在这里,我们设计核/壳EAB封装用电缆,一维模型系统,以方便EET研究,其中本地微环境可以合理控制,以建立结构功能的相关性具有完全的生物相关性。特别地,我们的与光伏希瓦氏菌PV-4(S. loihica)包封电缆证明的概念研究证明纤维直径的精确调制(从6.9 +/- 1.1至+/- 25.1 2.4微米)和细菌的相互作用,这些发现为原位光学和易地电镜观察发现不同的节目间结构的形成中起重要作用。这样形成的细菌电缆2.5-16.2 mS.cm(-1),它是高度地依赖于细菌密度以及间互连的性质和数量的范围内表现出导电性。下电子受体限制条件下,紧密接触的细菌促进其可以直接转换到的EET效率的提高在蜂窝接口高密度的自组装纳米材料的发展(16.2 mS.cm(-1))相比较以分离,远程连接的细菌样品(6.4 mS.cm(-1))。细胞培养过程中引入的可溶性电子受体的浓度超过然而,基本上抑制蜂窝互连和引线的至显著降低导电性的形成(2.5 mS.cm(-1))。频率相关的测量进一步揭示EAB网络的该EET相似特征到电子跳频在导电性高分子基质,包括主导直流

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号