...
首页> 外文期刊>Nano letters >Electrochemical Reaction Mechanism of the MoS2 Electrode in a Lithium-Ion Cell Revealed by in Situ and Operando X-ray Absorption Spectroscopy
【24h】

Electrochemical Reaction Mechanism of the MoS2 Electrode in a Lithium-Ion Cell Revealed by in Situ and Operando X-ray Absorption Spectroscopy

机译:锂离子电池中MOS 2 电极的电化学反应机理,通过原位和X射线吸收光谱显示出来

获取原文
获取原文并翻译 | 示例
           

摘要

As a typical transition metal dichalcogenide, MoS_(2) offers numerous advantages for nanoelectronics and electrochemical energy storage due to its unique layered structure and tunable electronic properties. When used as the anode in lithium-ion cells, MoS_(2) undergoes intercalation and conversion reactions in sequence upon lithiation, and the reversibility of the conversion reaction is an important but still controversial topic. Here, we clarify unambiguously that the conversion reaction of MoS_(2) is not reversible, and the formed Li_(2)S is converted to sulfur in the first charge process. Li_(2)S/sulfur becomes the main redox couple in the subsequent cycles and the main contributor to the reversible capacity. In addition, due to the insulating nature of both Li_(2)S and sulfur, a strong relaxation effect is observed during the cycling process. This study clearly reveals the electrochemical lithiation–delithiation mechanism of MoS_(2), which can facilitate further developments of high-performance MoS_(2)-based electrodes.
机译:作为典型的过渡金属二氯甲酸酯,MOS_(2)由于其独特的层状结构和可调谐电子特性,为纳米电子和电化学能量存储提供了许多优点。当用作锂离子电池中的阳极时,MOS_(2)在锂化时依次经历嵌入和转化反应,并且转化反应的可逆性是重要但仍有争议的主题。这里,我们明确地阐明了MOS_(2)的转化反应不可逆转,并且形成的Li_(2)S在第一电荷过程中转化为硫。 Li_(2)S /硫在随后的循环中成为主要的氧化还原,以及可逆容量的主要贡献者。另外,由于Li_(2)S和硫的绝缘性,在循环过程中观察到强烈的松弛效果。该研究清楚地揭示了MOS_(2)的电化学锂锂化型机构,其可以促进高性能MOS_(2)基电极的进一步发展。

著录项

  • 来源
    《Nano letters》 |2018年第2期|共10页
  • 作者单位

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

    Advanced Light Source Energy Storage and Distributed Resources Division and Material Sciences Division Lawrence Berkeley National Laboratory Berkeley California 94720 United States;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 特种结构材料;物理化学(理论化学)、化学物理学;
  • 关键词

    energy storage; in situ; Lithium ion batteries; MoSlt; subgt; 2lt; /subgt; operando; X-ray absorption spectroscopy;

    机译:储能;原位;锂离子电池;MOS<亚>2</ sub>X射线吸收光谱;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号