...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Thermodynamic Stacking Fault Energy, Chemical Composition, and Microstructure Relationship in High-Manganese Steels
【24h】

Thermodynamic Stacking Fault Energy, Chemical Composition, and Microstructure Relationship in High-Manganese Steels

机译:热力学堆叠故障能量,化学成分和高锰钢中的微观结构关系

获取原文
获取原文并翻译 | 示例

摘要

Stacking fault energy (SFE) is related to activating complex high strength and ductility mechanisms such as transformation-induced plasticity and twinning-induced plasticity effects. This type of energy can be estimated by many different methods and its importance is in its ability to predict microstructure and phase transformation behavior when the material is submitted to stress/ strain. In order to study the SFE, chemical composition, and microstructure relationships, eleven different welding parameters were chosen to obtain a large range of dilution levels. A new tubular wire electrode of high-manganese steel (21 wt pct Mn) was used as the consumable and an SAE 1012 steel plate (0.6 wt pct Mn) as the base metal in a flux-cored arc welding process. These welding parameters were related to the phases formed and phase transformation behavior in the fusion zone. The SFE of the austenite phase was calculated using a thermodynamic model. The welding parameters produced SFE values in the range of - 5 to 7 mJ/m(2). epsilon-martensite and austenite were observed in all samples, but alpha'-martensite was only found in those that presented negative SFE values, i.e., those with lower Mn content. Chemical Gibbs Free energy was the component with the most influence on the SFE. Nanoindentation detected the phase transformations during hardness testing for the medium and low dilution levels used, while the high dilution levels presented the highest hardness and modulus of elasticity values, and the lowest elastic and plastic deformation values. The results provide an improved method to develop high-manganese steels with microstructure control through welding parameters. (C) The Minerals, Metals & Materials Society and ASM International 2020.
机译:堆叠故障能量(SFE)与激活复杂的高强度和延展性机制有关,例如转化诱导的可塑性和孪晶诱导的可塑性效应。这种类型的能量可以通过许多不同的方法估计,并且当材料被提交给应力/应变时,其重要性是预测微观结构和相变行为的能力。为了研究SFE,化学成分和微观结构关系,选择11种不同的焊接参数以获得大量的稀释水平。一种新的高锰钢(21wt PCT MN)的管状线电极用作消耗品和SAE 1012钢板(0.6Wt PCT MN),作为磁通芯弧焊过程中的基金金属。这些焊接参数与在融合区中形成的相位和相变行为有关。使用热力学模型计算奥氏体相的SFE。焊接参数在5至7 MJ / m(2)的范围内产生SFE值。在所有样品中观察到ε-马氏体和奥氏体,但α-马氏体仅在那些呈现阴性SFE值的那些中发现,即具有较低Mn含量的那些。 Chemical Gibbs自由能量是对SFE影响最大的组分。纳米indentation检测在使用的培养基和低稀释水平的硬度测试期间的相变,而高稀释水平呈现出弹性值的最高硬度和模量,以及最低的弹性和塑性变形值。结果提供了一种通过焊接参数开发具有微观结构控制的高锰钢的改进方法。 (c)矿产,金属和材料协会和ASM International 2020。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号