...
首页> 外文期刊>Metallurgical and Materials Transactions, A. Physical Metallurgy and Materials Science >Application of the Thermodynamic Extremal Principle to Massive Transformations in Fe-C Alloys
【24h】

Application of the Thermodynamic Extremal Principle to Massive Transformations in Fe-C Alloys

机译:热力学极值原理在Fe-C合金中的大规模转化中的应用

获取原文
获取原文并翻译 | 示例

摘要

The thermodynamic extremal principle was applied to propose a model in which trans-interface diffusion from the product phase to the interface, from the interface to the parent phase and interface migration are integrated for diffusion-controlled phase transformations in Fe-C alloys. Compared with the classical models with either a local-equilibrium condition or a constrained carbon equilibrium condition, the current model is able to predict massive transformations in the two-phase region. Application to isothermal phase transformations showed that the phase transformation mode is independent of (dependent on) trans-interface diffusion when the initial composition is close to the T-0 line (close to the alpha/alpha + gamma boundary). Ascribed to the large solute diffusivity of C, the thickness of the spike upon massive transformations could be much larger than the atomic spacing and the diffusion-controlled phase transformations could be faster than the interface-controlled phase transformations. Three stages, i.e., the diffusive transformation, massive transformation and the soft impingement stages, were predicted for phase transformations upon continuous cooling, according to which the critical limit between diffusive and massive transformations was determined to be within the two-phase region, being consistent with the experimental results in ultra-low-carbon Fe-C alloys. The current work could be very useful to control diffusion-controlled phase transformations and modulate the mechanical properties of steels. (C) The Minerals, Metals & Materials Society and ASM International 2018
机译:应用热力学极值原理提出了一种模型,其中从产物相到界面的反式接口扩散,从母相和界面迁移的界面被整合用于Fe-C合金中的扩散控制相变。与具有局部平衡条件或约束碳平衡条件的经典模型相比,电流模型能够预测两相区域中的大量变换。在等温相变的应用表明,当初始组合物接近T-0线(靠近α/ alpha +伽马边界)时,相变模式与(取决于)反式接口扩散无关。归因于C的大溶质扩散率C,穗在大量变换时的厚度可能远大于原子间距,并且扩散控制的相变可能比界面控制的相变快。在连续冷却时预测三个阶段,即扩散变换,大量变换和软撞击阶段,根据该相变,根据该相变,根据该相变,差分和巨大变换之间的临界极限被确定为两相区域,是一致的用超低碳Fe-C合金的实验结果。目前的工作对于控制扩散控制的相变并调节钢的机械性能非常有用。 (c)2018年矿物质,金属和材料协会和ASM国际

著录项

  • 来源
  • 作者单位

    Northwestern Polytech Univ Ctr Adv Lubricat &

    Seal Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Ctr Adv Lubricat &

    Seal Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Ctr Adv Lubricat &

    Seal Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Ctr Adv Lubricat &

    Seal Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

    Northwestern Polytech Univ Ctr Adv Lubricat &

    Seal Mat State Key Lab Solidificat Proc Xian 710072 Shaanxi Peoples R China;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 冶金技术 ;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号