...
首页> 外文期刊>Medical Physics >Optical imaging method to quantify spatial dose variation due to the electron return effect in an MR‐linac
【24h】

Optical imaging method to quantify spatial dose variation due to the electron return effect in an MR‐linac

机译:光学成像方法,以定量MR-LINAC中的电子返回效果引起的空间剂量变化

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose Treatment planning systems (TPSs) for MR‐linacs must employ Monte Carlo‐based simulations of dose deposition to model the effects of the primary magnetic field on dose. However, the accuracy of these simulations, especially for areas of tissue‐air interfaces where the electron return effect (ERE) is expected, is difficult to validate due to physical constraints and magnetic field compatibility of available detectors. This study employs a novel dosimetric method based on remotely captured, real‐time optical Cherenkov and scintillation imaging to visualize and quantify the ERE. Methods An intensified CMOS camera was used to image two phantoms with designed ERE cavities. Phantom A was a 40?cm?×?10?cm?×?10?cm clear acrylic block drilled with five holes of increasing diameters (0.5, 1, 2, 3, 4?cm). Phantom B was a clear acrylic block (25?cm?×?20?cm?×?5?cm) with three cavities of increasing diameter (3, 2, 1?cm) split into two halves in the transverse plane to accommodate radiochromic film. Both phantoms were imaged while being irradiated by 6?MV flattening filter free (FFF) beams within a MRIdian Viewray (Viewray, Cleveland, OH) MR‐linac (0.34?T primary field). Phantom A was imaged while being irradiated by 6?MV FFF beams on a conventional linac (TrueBeam, Varian Medical Systems, San Jose, CA) to serve as a control. Images were post processed in Matlab (Mathworks Inc., Natick, MA) and compared to TPS dose volumes. Results Control imaging of Phantom A without the presence of a magnetic field supports the validity of the optical image data to a depth of 6?cm. In the presence of the magnetic field, the optical data shows deviations from the commissioned TPS dose in both intensity and localization. The largest air cavity examined (3?cm) indicated the largest dose differences, which were above 20% at some locations. Experiments with Phantom B illustrated similar agreement between optical and film dosimetry comparisons with TPS data in areas not affected by ERE. Conclusion There are some appreciable differences in dose intensity and spatial dose distribution observed between the novel experimental data set and the dose models produced by the current clinically implemented MR‐IGRT TPS.
机译:MR-LINACS的目的治疗系统(TPS)必须采用蒙特卡罗的剂量沉积模拟,以模拟初级磁场对剂量的影响。然而,这些模拟的准确性,特别是对于预期电子返回效果(ORE)的组织空气界面区域,由于可用探测器的物理限制和磁场兼容性,难以验证。本研究采用基于远程捕获,实时光学Cherenkov和闪烁成像的新型剂量法,以可视化和量化IRE。方法采用强化CMOS相机与设计的ERE腔有两个幻影。幽灵A是40?厘米?×10?cm?×10?cm透明丙烯酸块,钻有五个孔的增加(0.5,1,2,3,4Ω·cm)。 Phantom B是透明的丙烯酸块(25Ω·cm?×20?cm?×5Ω·厘米),其三个腔增加到横向平面中的两个半部以容纳放射刻度电影。在MRIDIAN Viewray(Viewray,Cleveland,OH)MR-LINAC(0.34·T初级场)中,在6?MV平坦滤波器(FFF)梁被辐照的同时对两种幽灵进行成像。在传统的LINAC(Truebeam,Varian Medical Systems,SAN JOSE,CA)上的6个MV FFF光束照射时被成像幻像A,以作为控制。图像在Matlab(Mathworks Inc.,Natick,MA)中处理,并与TPS剂量增加相比。结果在没有磁场的情况下,幻象A的控制成像支持光学图像数据的有效性至6Ωcm的深度。在存在磁场的情况下,光学数据显示了与强度和定位的委托TPS剂量的偏差。所检测的最大空腔(3厘米)表示最大剂量差异,在某些位置高于20%。幻影B的实验在光学和薄膜剂量测定与TPS数据不受影响的区域之间的幻象和薄膜剂量测定比较之间的实验。结论新型实验数据集之间观察到的剂量强度和空间剂量分布存在一些明显的差异,并通过当前临床实施的MR-IGRT TPS产生的剂量模型。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号