首页> 外文期刊>Medical Physics >Scintillator avalanche photoconductor with high resolution emitter readout for low dose x-ray imaging: lag.
【24h】

Scintillator avalanche photoconductor with high resolution emitter readout for low dose x-ray imaging: lag.

机译:闪烁体雪崩光电导体,具有高分辨率发射极读出低剂量X射线成像:滞后。

获取原文
获取原文并翻译 | 示例
           

摘要

PURPOSE: A new concept of indirect conversion flat-panel imager with avalanche gain and field emitter array (FEA) readout is being investigated. It is referred to as scintillator avalanche photoconductor with high resolution emitter readout (SAPHIRE). The present work investigates the temporal performance, i.e., lag, of SAPHIRE. METHODS: Since the temporal performance of the x-ray detection materials, i.e., the structured scintillator and avalanche amorphous selenium (a-Se) photoconductor, has been studied previously, the investigation is focused on lag due to the FEA readout method. The principle of FEA readout is similar to that of scanning electron beam readout used in camera tubes, where the dominant source of lag is the energy spread of electrons. Since the principles of emission and beam focusing methods for FEA are different from thermionic emission used in camera tubes, its electron beam energy spread and hence lag is expected to be different. In the present work, the energy spread of the electrons emitted from a FEA was investigated theoretically by analyzing different contributing factors due to the FEA design and operations: The inherent energy spread of field emission, the FEA driving pulse delay, and the angular distribution of emitted electrons. The electron energy spread determined the beam acceptance characteristic curve of the photoconductive target, i.e., the accepted beam current (I(a)) as a function of target potential (V(t)), from which lag could be calculated numerically. Lag calculation was performed using FEA parameters of two prototype HARP-FEA image sensors, and the results were compared with experimental measurements. Strategies for reducing lag in SAPHIRE were proposed and analyzed. RESULTS: The theoretical analysis shows that the dominant factor for lag is the angular distribution of electrons emitted from the FEA. The first frame lags for two prototype sensors with 4 and 25 microm HARP layer thicknesses were 62.1% and 9.1%, respectively. A lag clearance procedure can be implemented by turning on all the FEA pixels simultaneously between subsequent frames without negative impact of readout speed. For large-area SAPHIRE, the bias electrode for the HARP needs to be divided into strips to allow parallel readout. With typical cardiac detector parameters, SAPHIRE with 128 parallel strips can provide real-time readout (30 frames/s) with first frame lag of -4%. CONCLUSIONS: The investigation of lag in SAPHIRE shows that the angular distribution of emitted electrons from FEA can result in substantial lag if the readout was performed pixel by pixel. Effective strategies for reducing lag include dividing the bias electrode into multiple strips to allow parallel readout and the incorporation of rapid charge clearance procedure between subsequent frames or rows.
机译:目的:正在研究具有雪崩增益和现场发射器阵列(FEA)读数的间接转换平板成像器的新概念。它被称为具有高分辨率发射器读数(Saphire)的闪烁体雪崩光电导体。目前的工作调查了清楚的时间性能,即滞后。方法:从前研究了X射线检测材料的时间性性能,即,已经研究了结构化的闪烁体和雪崩非晶硒(A-SE)光电导体,因此研究了由于FEA读出方法引起的滞后。 FEA读数的原理类似于相机管中使用的扫描电子束读数的原理,其中滞后的主要来源是电子的能量扩展。由于FEA的发射和光束聚焦方法的原理不同于相机管中使用的热离子发射,因此其电子束能量扩散并预期滞后是不同的。在本作本作中,理论上通过分析由于FEA设计和操作而分析不同的贡献因素来研究从FEA排出的电子的能量扩散:场发射的固有能量扩散,FEA驱动脉冲延迟以及角度分布发射的电子。电子能量扩展确定了光电导目标的光束验收特性曲线,即接受的光束电流(I(a))作为目标电位的函数(v(t)),从该函数可以在数值上计算滞后。使用两个原型竖琴FEA图像传感器的FEA参数进行滞后计算,并将结果与​​实验测量进行比较。提出并分析了解除了落叶滞后的策略。结果:理论分析表明,滞后的主导因素是来自FEA发出的电子的角分布。具有4个和25微米竖琴层厚度的两个原型传感器的第一帧滞后分别为62.1%和9.1%。通过在随后的帧之间同时接通所有FEA像素而没有读出速度的负面影响来实现滞后清除过程。对于大面积的清晰度,仓库的偏置电极需要分成条带,以允许并行读出。使用典型的心脏检测器参数,具有128个平行条带的发声可以提供实时读数(30帧/帧),第一帧滞后为-4%。结论:Saphire中滞后的研究表明,如果读出通过像素执行像素,则来自FEA的发射电子的角度分布可能导致大量滞后。减少滞后的有效策略包括将偏置电极分成多个条带,以允许并行读出和在后续帧或行之间的快速充电清除过程结合。

著录项

  • 来源
    《Medical Physics》 |2009年第9期|共12页
  • 作者

    Lia D; Zhao W; Nanba M;

  • 作者单位

    Department of Radiology State University of New York at Stony Brook L-4 120 Health Science Center Stony Brook New York 11794-8460 USA.;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 基础医学;
  • 关键词

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号