...
首页> 外文期刊>Medical Physics >Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread‐out‐Bragg‐peaks in light ion beam therapy
【24h】

Characterization of a multilayer ionization chamber prototype for fast verification of relative depth ionization curves and spread‐out‐Bragg‐peaks in light ion beam therapy

机译:用于快速验证相对深度电离曲线的多层电离室原型的表征,光离子束治疗中的散布 - 布拉格峰值

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose To dosimetrically characterize a multilayer ionization chamber ( MLIC ) prototype for quality assurance ( QA ) of pristine integral ionization curves ( IC s) and spread‐out‐Bragg‐peaks ( SOBP s) for scanning light ion beams. Methods QUBE (De.Tec.Tor., Torino, Italy) is a modular detector designed for QA in particle therapy ( PT ). Its main module is a MLIC detector, able to evaluate particle beam relative depth ionization distributions at different beam energies and modulations. The charge collecting electrodes are made of aluminum, for a nominal water equivalent thickness ( WET ) of ~75?mm. The detector prototype was calibrated by acquiring the signals in the initial plateau region of a pristine BP and in terms of WET . Successively, it was characterized in terms of repeatability response, linearity, short‐term stability and dose rate dependence. Beam‐induced measurements of activation in terms of ambient dose equivalent rate were also performed. To increase the detector coarse native spatial resolution (~2.3?mm), several consecutive acquisitions with a set of certified 0.175‐mm‐thick PMMA sheets (Goodfellow, Cambridge Limited, UK ), placed in front of the QUBE mylar entrance window, were performed. The IC s/ SOBP s were achieved as the result of the sum of the set of measurements, made up of a one‐by‐one PMMA layer acquisition. The newly obtained detector spatial resolution allowed the experimental measurements to be properly comparable against the reference curves acquired in water with the PTW Peakfinder. Furthermore, QUBE detector was modeled in the FLUKA Monte Carlo ( MC ) code following the technical design details and IC s/ SOBP s were calculated. Results Measurements showed a high repeatability: mean relative standard deviation within ±0.5% for all channels and both particle types. Moreover, the detector response was linear with dose (R 2 ??0.998) and independent on the dose rate. The mean deviation over the channel‐by‐channel readout respect to the reference beam flux (100%) was equal to 0.7% (1.9%) for the 50% (20%) beam flux level. The short‐term stability of the gain calibration was very satisfying for both particle types: the channel mean relative standard deviation was within ±1% for all the acquisitions performed at different times. The IC s obtained with the MLIC QUBE at improved resolution satisfactorily matched both the MC simulations and the reference curves acquired with Peakfinder. Deviations from the reference values in terms of BP position, peak width and distal fall‐off were submillimetric for both particle types in the whole investigated energy range. For modulated SOBP s, a submillimetric deviation was found when comparing both experimental MLIC QUBE data against the reference values and MC calculations. The relative dose deviations for the experimental MLIC QUBE acquisitions, with respect to Peakfinder data, ranged from ~1% to ~3.5%. Maximum value of 14.1?μSv/h was measured in contact with QUBE entrance window soon after a long irradiation with carbon ions. Conclusion MLIC QUBE appears to be a promising detector for accurately measuring pristine IC s and SOBP s. A simple procedure to improve the intrinsic spatial resolution of the detector is proposed. Being the detector very accurate, precise, fast responding, and easy to handle, it is therefore well suited for daily checks in PT .
机译:目的为剂量测定扫描光离子束表征多层电离室(MLIC)原型为原始积分电离曲线的质量保证(QA)(IC S)和展开的-布拉格峰(SOBP多个)。方法QUBE(De.Tec.Tor。,意大利都灵)是一个模块化的检测器设计用于QA在粒子疗法(PT)。它的主要模块是一个MLIC检测器,能够在不同的射束能量和调制,以评估粒子束相对深度电离分布。电荷收集电极由铝制成,为的〜75 -3毫米的标称水当量厚度(湿)。该检测器的原型通过在原始BP的初始高原地区和WET方面取得的信号进行校准。接着,它其特征在于重复性响应,线性度,短期稳定性和剂量率的依赖性的条款。束诱导在周围剂量当量率方面活化的测量还进行。为了提高检测器的粗原生空间分辨率(〜2.3?mm)时,几个连续采集与一组认证0.175毫米厚的PMMA板(古德费洛,剑桥有限公司,英国),放置在QUBE聚酯薄膜入射窗的前面的,分别为执行。该IC S / SOBP小号分别实现作为该组测量值,一个接一个的PMMA层获取的由的和的结果。新获得的检测器的空间分辨率允许的实验测量是针对在水中与PTW Peakfinder获取的参考曲线正确地相媲美。此外,检测器QUBE在以下的技术设计细节和IC S的FLUKA蒙特卡洛(MC)代码被模拟/计算SOBP秒。结果测量显示出高重复性:对所有通道和两个颗粒类型±0.5%的范围内的平均相对标准偏差。此外,检测器的响应是随剂量(R 2 - ?; 0.998)的线性和独立于剂量率。通过信道由信道的读出相对于参考光束通量(100%)的平均偏差为等于0.7%(1.9%)为50%(20%)光束通量水平。增益校准的短期稳定性非常满足两种颗粒类型:信道平均相对标准偏差为内对于所有在不同时间执行的取样±1%。所述IC S与MLIC QUBE获得的改进的分辨率令人满意匹配两者MC模拟和与Peakfinder获取的参考曲线。从基准值偏差的BP的位置,峰宽和远端脱落词条亚毫米级在整个研究能量范围两者的颗粒类型。对于调制SOBP S,针对比较的基准值和MC计算两个实验MLIC QUBE数据时一个亚毫米偏差被发现。的相对剂量偏差为实验MLIC QUBE收购,相对于Peakfinder数据,范围从约1%至约3.5%。 14.1?微西弗/小时的最大值与QUBE入射窗接触的长照射碳离子后很快进行测定。结论MLIC QUBE似乎是用于准确测量原始IC S和SOBP秒的有前途的检测器。建议提高探测器的固有空间分辨率的简单过程。作为检测器非常准确,精确,快速响应,并且容易处理,因此,非常适合于在PT日常检查。

著录项

  • 来源
    《Medical Physics》 |2018年第5期|共12页
  • 作者单位

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    De.Tec.Tor. S.r.l.Torino 10144 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

    De.Tec.Tor. S.r.l.Torino 10144 Italy;

    Centro Nazionale di Adroterapia Oncologica (CNAO Foundation)Pavia 27100 Italy;

  • 收录信息
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类 基础医学;
  • 关键词

    ion beam therapy; MLIC; QA;

    机译:离子束疗法;MLIC;QA;

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号