...
首页> 外文期刊>Medical Physics >Comparative study of algorithms for synthetic CT CT generation from MRI MRI : Consequences for MRI MRI ‐guided radiation planning in the pelvic region
【24h】

Comparative study of algorithms for synthetic CT CT generation from MRI MRI : Consequences for MRI MRI ‐guided radiation planning in the pelvic region

机译:MRI MRI合成CT CT生成算法的比较研究:骨盆区MRI MRI辐射规划的后果

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Purpose Magnetic resonance imaging ( MRI )‐guided radiation therapy ( RT ) treatment planning is limited by the fact that the electron density distribution required for dose calculation is not readily provided by MR imaging. We compare a selection of novel synthetic CT generation algorithms recently reported in the literature, including segmentation‐based, atlas‐based and machine learning techniques, using the same cohort of patients and quantitative evaluation metrics. Methods Six MRI ‐guided synthetic CT generation algorithms were evaluated: one segmentation technique into a single tissue class (water‐only), four atlas‐based techniques, namely, median value of atlas images ( ALM edian)[1][Sj?lund J, 2015], atlas‐based local weighted voting ( ALWV )[2][Dowling JA, 2015], bone enhanced atlas‐based local weighted voting ( ALWV ‐Bone)[3][Arabi H, 2016], iterative atlas‐based local weighted voting ( ALWV ‐Iter)[4][Burgos N, 2017], and a machine learning technique using deep convolution neural network ( DCNN )[5][Han X, 2017]. Results Organ auto‐contouring from MR images was evaluated for bladder, rectum, bones, and body boundary. Overall, DCNN exhibited higher segmentation accuracy resulting in Dice indices ( DSC ) of 0.93?±?0.17, 0.90?±?0.04, and 0.93?±?0.02 for bladder, rectum, and bones, respectively. On the other hand, ALM edian showed the lowest accuracy with DSC of 0.82?±?0.20, 0.81?±?0.08, and 0.88?±?0.04, respectively. DCNN reached the best performance in terms of accurate derivation of synthetic CT values within each organ, with a mean absolute error within the body contour of 32.7?±?7.9? HU , followed by the advanced atlas‐based methods ( ALWV : 40.5?±?8.2? HU , ALWV ‐Iter: 42.4?±?8.1? HU , ALWV ‐Bone: 44.0?±?8.9? HU ). ALM edian led to the highest error (52.1?±?11.1? HU ). Considering the dosimetric evaluation results, ALWV ‐Iter, ALWV , DCNN and ALWV ‐Bone led to similar mean dose estimation within each organ at risk and target volume with less than 1% dose discrepancy. However, the two‐dimensional gamma analysis demonstrated higher pass rates for ALWV ‐Bone, DCNN , ALM edian and ALWV ‐Iter at 1%/1?mm criterion with 94.99?±?5.15%, 94.59?±?5.65%, 93.68?±?5.53% and 93.10?±?5.99% success, respectively, while ALWV and water‐only resulted in 86.91?±?13.50% and 80.77?±?12.10%, respectively. Conclusions Overall, machine learning and advanced atlas‐based methods exhibited promising performance by achieving reliable organ segmentation and synthetic CT generation. DCNN appears to have slightly better performance by achieving accurate automated organ segmentation and relatively small dosimetric errors (followed closely by advanced atlas‐based methods, which in some cases achieved similar performance). However, the DCNN approach showed higher vulnerability to anatomical variation, where a greater number of outliers was observed with this method. Considering the dosimetric results obtained from the evaluated methods, the challenge of electron density estimation from MR images can be resolved with a clinically tolerable error.
机译:目的磁共振成像(MRI) - 导辐射治疗(RT)处理计划受到剂量计算所需的电子密度分布的限制,MR成像不容易提供。我们比较了一系列新颖的合成CT生成算法在文献中报告,包括基于分段的,基于地图集的和机器学习技术,使用相同的患者队列和定量评估度量。方法评价六种MRI -Gueed合成CT生成算法:一个分段技术进入单个组织类(仅限水),四个基于地图集的技术,即地图集图像的中值(ALM Edian)[1] [SJ吗?隆德j,2015],基于阿特拉斯的本地加权投票(Alwv)[2] [Dowling Ja,2015],骨增强的地图集的局部加权投票(Alwv -bone)[3] [Arabi H,2016],迭代地图集 - 基于局部加权投票(ALWV-ITER)[4] [BURGOS N,2017],以及使用深卷积神经网络(DCNN)[5] [汉X,2017]的机器学习技术。结果对MR图像的器官自动轮廓用于膀胱,直肠,骨骼和身体边界。总的来说,DCNN展示了较高的分割精度,导致骰子指数(DSC)为0.93≤0.17,0.17,0.90?±0.04,并分别为膀胱,直肠和骨骼0.93?±0.02。另一方面,ALM Edian分别显示了DSC的最低精度0.82?±0.20,0.81?±0.08,0.88?±0.04。 DCNN在每个器官内的合成CT值的准确推导方面达到了最佳性能,在32.7的身体轮廓内具有平均绝对误差?±7.9?胡,其次是基于先进的阿特拉斯的方法(ALWV:40.5?±±8.2?HU,ALWV -TER:42.4?±8.1?HU,ALWV -BONE:44.0?±8.9?HU)。 ALM Edian导致最高的错误(52.1?±11.1?HU)。考虑到剂量测定结果,AlWV-istor,AlWV,DCNN和AlWV - 在风险和目标体积的每个器官内导致了相似的平均剂量估计,并且靶体积小于1%的剂量差异。然而,二维γ分析表现出较高的AlWV -Bone,DCNN,ALM EDIAN和ALWV-ITER率,以1%/ 1?mm标准,94.99?±5.15%,94.59?±5.65%,93.68? ±5.53%和93.10?±5.99%的成功,而ALWV和水 - 仅导致86.91?±13.50%和80.77?±12.10%。结论通过实现可靠的器官分割和合成CT生成,总体而言,基于机器学习和先进的地图集的方法表现出了有希望的性能。 DCNN似乎通过实现准确的自动器官分割和相对较小的DOSimetric误差来具有稍微更好的性能(按照基于高级的地图集的方法而紧密,在某些情况下实现了类似的性能)。然而,DCNN方法表现出对解剖变化的更高脆弱性,其中通过该方法观察到更大量的异常值。考虑到从评估方法获得的剂量测量结果,可以通过临床容忍的误差来解决来自MR图像的电子密度估计的挑战。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号