...
首页> 外文期刊>Medical Physics >SU‐C‐209‐02: 3D Fluoroscopic Image Generation From Patient‐Specific 4DCBCT‐Based Motion Models Derived From Clinical Patient Images
【24h】

SU‐C‐209‐02: 3D Fluoroscopic Image Generation From Patient‐Specific 4DCBCT‐Based Motion Models Derived From Clinical Patient Images

机译:SU-C-209-02:3D荧光透视图像从临床患者图像衍生的基于患者特定的4dcbct的运动模型产生

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose: We develop a method to generate time varying volumetric images (3D fluoroscopic images) using patient‐specific motion models derived from four‐dimensional cone‐beam CT (4DCBCT). Methods: Motion models are derived by selecting one 4DCBCT phase as a reference image, and registering the remaining images to it. Principal component analysis (PCA) is performed on the resultant displacement vector fields (DVFs) to create a reduced set of PCA eigenvectors that capture the majority of respiratory motion. 3D fluoroscopic images are generated by optimizing the weights of the PCA eigenvectors iteratively through comparison of measured cone‐beam projections and simulated projections generated from the motion model. This method was applied to images from five lung‐cancer patients. The spatial accuracy of this method is evaluated by comparing landmark positions in the 3D fluoroscopic images to manually defined ground truth positions in the patient cone‐beam projections. Results: 4DCBCT motion models were shown to accurately generate 3D fluoroscopic images when the patient cone‐beam projections contained clearly visible structures moving with respiration (e.g., the diaphragm). When no moving anatomical structure was clearly visible in the projections, the 3D fluoroscopic images generated did not capture breathing deformations, and reverted to the reference image. For the subset of 3D fluoroscopic images generated from projections with visibly moving anatomy, the average tumor localization error and the 95th percentile were 1.6 mm and 3.1 mm respectively. Conclusion: This study showed that 4DCBCT‐based 3D fluoroscopic images can accurately capture respiratory deformations in a patient dataset, so long as the cone‐beam projections used contain visible structures that move with respiration. For clinical implementation of 3D fluoroscopic imaging for treatment verification, an imaging field of view (FOV) that contains visible structures moving with respiration should be selected. If no other appropriate structures are visible, the images should include the diaphragm. This project was supported, in part, through a Master Research Agreement with Varian Medical Systems, Inc, Palo Alto, CA.
机译:目的:我们使用从四维锥形光束CT(4DCBCT)导出的患者特定运动模型来开发一种生成时间变化体积图像(3D荧光镜图像)的方法。方法:通过选择一个4dcbct阶段作为参考图像来导出运动模型,并将其余图像注册到它。主成分分析(PCA)对所得到的位移矢量字段(DVF)进行,以创建一组减少的PCA特征向量,捕获大部分呼吸运动。通过比较从运动模型产生的测量的锥形束投影和模拟投影来迭代地通过优化PCA特征向量的权重来产生3D透视图像。该方法应用于来自五种肺癌患者的图像。通过比较3D透视图像中的地标位置来评估该方法的空间准确性,以在患者锥形束突起中手动地定义地面真理位置来评估。结果:当患者锥形束突起包含清晰可见的结构时,显示4DCBCT运动模型以准确地产生3D荧光透视图像,其清晰可见的结构移动呼吸(例如,隔膜)。当在投影中没有清晰地看到移动解剖结构时,产生的3D透视图像没有捕获呼吸变形,并恢复到参考图像。对于从具有明显移动解剖结构产生的突起产生的3D荧光透视图像的子集,平均肿瘤定位误差和95百分位分别为1.6 mm和3.1mm。结论:该研究表明,基于4DCBCT的3D荧光透视图像可以在患者数据集中精确地捕获呼吸变形,只要使用的锥形束突起含有与呼吸一起移动的可见结构。对于用于治疗验证的3D荧光透视成像的临床实施,应选择含有与呼吸移动的可见结构的成像视野(FOV)。如果没有可见其他合适的结构,则图像应包括隔膜。该项目部分受到与Varian Medical Systems,Inc,Palo Alto,CA的主研究协议。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号