首页> 外文期刊>Medical Physics >Comparative assessment of linear least‐squares, nonlinear least‐squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic 18 18 F‐FDG PET
【24h】

Comparative assessment of linear least‐squares, nonlinear least‐squares, and Patlak graphical method for regional and local quantitative tracer kinetic modeling in cerebral dynamic 18 18 F‐FDG PET

机译:用于区域和局部定量示踪性动力学建模的线性最小二乘,非线性最小二乘和Patlak图形方法对脑动力学18 18 18宠物的比较评估

获取原文
获取原文并翻译 | 示例
           

摘要

Purpose Dynamic 18 F‐FDG PET allows quantitative estimation of cerebral glucose metabolism both at the regional and local (voxel) level. Although sensitive to noise and highly computationally expensive, nonlinear least‐squares (NLS) optimization stands as the reference approach for the estimation of the kinetic model parameters. Nevertheless, faster techniques, including linear least‐squares (LLS) and Patlak graphical method, have been proposed to deal with high resolution noisy data, representing a more adaptable solution for routine clinical implementation. Former research investigating the relative performance of the available algorithms lack precise evaluation of kinetic parameter estimates under realistic acquisition conditions. Methods The present study aims at the systematic comparison of the feasibility and pertinence of kinetic modeling of dynamic cerebral 18 F‐FDG PET using NLS, LLS, and Patlak method, based on numerical simulations and patient data. Numerical simulations were used to study the bias and variance of K 1 and K i parameters estimation under representative noise levels. Patient data allowed to assess the concordance between the three methods at the regional and voxel scale, and to evaluate the robustness of the estimations with respect to patient head motion. Results and Conclusions Our findings indicate that at the regional level NLS and LLS provide kinetic parameter estimates ( K 1 and K i ) with similar bias and variance characteristics ( K 1 bias?±?relative standard deviation [RSD] 0.0?±?5.1% and 0.1%?±?4.9% for NLS and LLS respectively, K i bias?±?RSD 0.1%?±?4.5% and ?0.7%?±?4.4% for NLS and LLS respectively). NLS estimates appear, however, to be slightly less sensitive to patient motion. At the voxel level, provided that patient motion is negligible or corrected, LLS offers an appealing alternative solution for local K 1 mapping. It yields K1 estimates that are highly correlated, with high correlation with NLS values (Pearson's r?=?0.95 on actual data) within computations times less than two orders of magnitude lower. Last, Patlak method appears as the most robust and accurate technique for the estimation of K i values at the regional and voxel scale, with or without head motion. It provides low bias/low variance K i quantification (bias?±?RSD ?1.5?±?9.5% and ?4.1?±?19.7% for Patlak and NLS respectively) as well as smooth parametric images suitable for visual assessment.
机译:目的动态18 F-FDG PET允许在区域和局部(体素)水平上进行脑葡萄糖代谢的定量估计。虽然对噪声和高度计算昂贵的敏感性,非线性最小二乘(NLS)优化是估计动力学模型参数的参考方法。然而,已经提出了更快的技术,包括线性最小二乘(LLS)和Patlak图形方法,以处理高分辨率嘈杂数据,代表常规临床实施的更适应性的解决方案。前研究调查可用算法的相对性能缺乏对现实收购条件下动力学参数估计的精确评估。方法本研究旨在使用NLS,LLS和Patlak方法系统比较动态脑18 F-FDG PET的动态脑18 F-FDG PET的动力学建模,基于数值模拟和患者数据。使用数值模拟来研究代表性噪声水平下的K 1和K I参数估计的偏差和方差。患者数据允许评估区域和体素等三种方法之间的一致性,并评估估计关于患者头部运动的鲁棒性。结果和结论我们的研究结果表明,在区域一级NLS和LLS提供具有相似偏差和方差特性的动力学参数估计(K 1和K I)(K 1偏差?相对标准偏差[RSD] 0.0?±5.1%对于NLS和LLS分别为0.1%?±4.9%,k i偏见?±α±0.1%?±4.5%和?0.7%?分别为NLS和LLS的4.4%)。然而,NLS估计将出现对患者运动略微敏感。在Voxel级别,只要患者运动可以忽略或纠正,LLS提供了一种吸引人的替代解决方案,用于本地K 1映射。它产生了高度相关的K1估计,与NLS值高相关(Pearson的R?=?在实际数据上的0.95),计算时间小于两个数量级。最后,Patlak方法作为估计区域和体素刻度的k i值的最强大和准确的技术,有或没有头部运动。它提供低偏差/低方差K i量化(偏置Δ±rsd?1.5?±9.5%和Δ4.1?±19.7%,分别适用于视觉评估的平滑参数图像。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号