首页> 外文期刊>Materials transactions >High-Pressure Phase Transformations under Severe Plastic Deformation by Torsion in Rotational Anvils
【24h】

High-Pressure Phase Transformations under Severe Plastic Deformation by Torsion in Rotational Anvils

机译:旋转铁砧扭转严重塑性变形下的高压相变

获取原文
获取原文并翻译 | 示例
           

摘要

Numerous experiments have documented that combination of severe plastic deformation and high mean pressure during high-pressure torsion in rotational metallic, ceramic, or diamond anvils produces various important mechanochemical effects. We will focus here on four of these: plastic deformation (a) significantly reduces pressure for initiation and completion of phase transformations (PTs), (b) leads to discovery of hidden metastable phases and compounds, (c) reduces PT pressure hysteresis, and (d) substitutes a reversible PT with irreversible PT. The goal of this review is to summarize our current understanding of the underlying phenomena based on multiscale atomistic and continuum theories and computational modeling. Recent atomistic simulations provide conditions for initiation of PTs in a defect-free lattice as a function of the general stress tensor. These conditions (a) allow one to determine stress states that significantly decrease the transformation pressure and (b) determine whether the given phase can, in principle, be preserved at ambient pressure. Nanoscale mechanisms of phase nucleation at plastic-strain-induced defects are studied analytically and by utilizing advanced phase field theory and simulations. It is demonstrated that the concentration of all components of the stress tensor near the tip of the dislocation pileup may decrease nucleation pressure by a factor of ten or more. These results are incorporated into the microscale analytical kinetic equation for strain-induced PTs. The kinetic equation is part of a macroscale geometrically-nonlinear model for combined plastic flow and PT. This model is used for finite-element simulations of plastic deformations and PT in a sample under torsion in a rotational anvil device. Numerous experimentally-observed phenomena are reproduced, and new effects are predicted and then confirmed experimentally. Combination of the results on all four scales suggests novel synthetic routes for new or known high-pressure phases (HPPs), experimental characterization of strain-induced PTs under high-pressure during torsion under elevated pressure.
机译:许多实验记录了在旋转金属,陶瓷或金刚石砧座中的高压扭转期间严重的塑性变形和高平均压力的组合产生了各种重要的机械化学作用。我们将在这里专注于其中的四个:塑性变形(a)显着降低了相变和完成相变(PTS)的压力,(b)导致发现隐藏的亚稳阶段和化合物,(c)降低Pt压力滞后,和(d)用不可逆转的PT替换可逆PT。本综述的目标是总结我们目前根据多尺度原子和连续理论和计算建模的潜在现象的理解。最近的原子模拟为缺陷晶格中的PTS引发的条件提供了一般应力张量的函数。这些条件(a)允许一个人确定显着降低转化压力的应力状态,并且(b)确定给定相位是否可以在环境压力下保存。在分析上研究了塑性 - 应变诱导的缺陷时相成核的纳米级机制,并利用先进的相场理论和模拟。结果证明,位错堆尖端附近的应力张量附近的所有部件的浓度可以将成核压力降低10个或更多。这些结果掺入了用于应变诱导的PTS的微观分析动力学方程。动力学方程是用于组合塑料流动和PT的宏观几何非线性模型的一部分。该模型用于旋转铁砧装置中扭转下旋转样品中塑性变形和PT的有限元模拟。再现多种实验观察的现象,预测新效果,然后通过实验证实。所有四个尺度的结果组合表明了新的或已知的高压相(HPP)的新型合成途径,在高压下扭转期间在高压下应变诱导的PTS的实验表征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号