首页> 外文期刊>European journal of cardio-thoracic surgery: Official journal of the European Association for Cardio-thoracic Surgery >Bioprinting of artificial blood vessels: current approaches towards a demanding goal.
【24h】

Bioprinting of artificial blood vessels: current approaches towards a demanding goal.

机译:人工血管的生物印刷品:目前对苛刻目标的方法。

获取原文
获取原文并翻译 | 示例
获取外文期刊封面目录资料

摘要

Free-form fabrication techniques, often referred to as '3D printing', are currently tested with regard to the processing of biological and biocompatible materials in general and for fabrication of vessel-like structures in particular. Such computer-controlled methods assemble 3D objects by layer-wise deposition or layer-wise cross-linking of materials. They use, for example, nozzle-based deposition of hydrogels and cells, drop-on-demand inkjet-printing of cell suspensions with subsequent cross-linking, layer-by-layer cross-linking of synthetic or biological polymers by selective irradiation with light and even laser-induced deposition of single cells. The need of vessel-like structures has become increasingly crucial for the supply of encapsulated cells for 3D tissue engineering, or even with regard to future application such as vascular grafts. The anticipated potential of providing tubes with tailored branching geometries made of biocompatible or biological materials pushes future visions of patient-specific vascularized tissue substitutions, tissue-engineered blood vessels and bio-based vascular grafts. We review here the early attempts of bringing together innovative free-form manufacturing processes with bio-based and biodegradable materials. The presented studies provide many important proofs of concepts such as the possibility to integrate viable cells into computer-controlled processes and the feasibility of supplying cells in a hydrogel matrix by generation of a network of perfused channels. Several impressive results in the generation of complex shapes and high-aspect-ratio tubular structures demonstrate the potential of additive assembly methods. Yet, it also becomes obvious that there remain major challenges to simultaneously match all material requirements in terms of biological functions (cell function supporting properties), physicochemical functions (mechanical properties of the printed material) and process-related (viscosity, cross-linkability) functions, towards the demanding goal of biofabricating artificial blood vessels.
机译:目前在一般而言之,目前测试了自由形式的制造技术,通常被称为“3D印刷”,通常是在生物和生物相容性材料的加工中进行测试,并特别用于制造容器状结构。这种计算机控制的方法通过层面沉积或层的层交联组装3D对象。它们使用例如基于喷嘴的水凝胶和细胞的沉积,通过选择性照射与光的选择性照射,随后的交联或生物聚合物的逐层交联的细胞悬浮液的滴落式喷墨印刷甚至激光诱导的单细胞沉积。血管状结构的需要对3D组织工程供应甚至关于诸如血管移植的未来应用的封装电池越来越重要。提供具有由生物相容性或生物材料制成的定制支化几何形状的管的预期潜力推动了未来的患者特异性血管化组织取代,组织工程血管和生物基血管移植物的未来视野。我们审查了在这里,早期尝试通过基于生物和可生物降解的材料汇集创新的自由形式制造过程。本研究提供了许多重要的概念证明,例如将活细胞整合到计算机控制过程中,通过产生灌注通道网络的水凝胶基质中的电池供应的可行性。几种令人印象深刻的结果,在复杂的形状和高纵横比管状结构的产生中表现出添加剂组装方法的潜力。然而,也明显显然,在生物学功能(电池功能支持性能),物理化学功能(印刷材料的机械性能)和与工艺相关(粘度,交叉栓性)中,仍然存在重大挑战。功能,朝着生物伪造人工血管的苛刻目标。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号