...
首页> 外文期刊>Environmental Science and Pollution Research >Effects of oxygen tension on the microbial community and functional gene expression of aerobic methane oxidation coupled to denitrification systems
【24h】

Effects of oxygen tension on the microbial community and functional gene expression of aerobic methane oxidation coupled to denitrification systems

机译:氧气张力对多血管甲烷氧化微生物群和功能基因表达的影响耦合到脱氮系统

获取原文
获取原文并翻译 | 示例
   

获取外文期刊封面封底 >>

       

摘要

Aerobic CH4 oxidation coupled to denitrification (AME-D) can not only mitigate the emission of greenhouse gas (e.g., CH4) to the atmosphere, but also reduce NO3? and/or NO2? and alleviate nitrogen pollution. The effects of O2 tension on the community and functional gene expression of methanotrophs and denitrifiers were investigated in this study. Although higher CH4 oxidation occurred in the AME-D system with an initial O2 concentration of 21% (i.e., the O2-sufficient condition), more NO3?-N was removed at the initial O2 concentration of 10% (i.e., the O2-limited environment). Type I methanotrophs, including Methylocaldum, Methylobacter, Methylococcus, Methylomonas, and Methylomicrobium, and type II methanotrophs, including Methylocystis and Methylosinus, dominated in the AME-D systems. Compared with type II methanotrophs, type I methanotrophs were more abundant in the AME-D systems. Proteobacteria and Actinobacteria were the main denitrifiers in the AME-D systems, and their compositions varied with the O2 tension. Quantitative PCR of the pmoA, nirS, and 16S rRNA genes showed that methanotrophs and denitrifiers were the main microorganisms in the AME-D systems, accounting for 46.4% and 24.1% in the O2-limited environment, respectively. However, the relative transcripts of the functional genes including pmoA, mmoX, nirK, nirS, and norZ were all less than 1%, especially the functional genes involved in denitrification under the O2-sufficient condition, likely due to the majority of the denitrifiers being dormant or even nonviable. These findings indicated that an optimal O2 concentration should be used to optimize the activity and functional gene expression of aerobic methanotrophs and denitrifiers in AME-D systems.
机译:有氧CH4氧化加上反硝化(AME-D)不仅可以减轻温室气体(例如,CH4)的排放,还可以减少NO3?和/或no2?并减轻氮污染。本研究研究了O2张力对甲基萎缩和脱氮剂的群落和功能基因表达的影响。虽然在AME-D系统中发生较高的CH 4氧化,但初始O2浓度为21%(即,O 2足部),但在初始O2浓度为10%(即,O2-)的初始O2浓度下除去更多NO 3·-N有限的环境)。 I型甲胰蛋白,包括甲基钙,甲基杆菌,甲基球菌,甲基胺和甲基MICOROPIUM,以及II型甲蛋白,包括甲基嘧啶和甲基核糖,在AME-D系统中支配。与II型甲蛋白相比,A型甲蛋白在AME-D系统中更丰富。蛋白质细菌和肌动菌是AME-D系统中的主要脱氮剂,它们的组合物随O2张力而变化。 PMOA,NIR和16S rRNA基因的定量PCR表明,甲蛋白萎缩剂是AME-D系统中的主要微生物,分别占O2限制环境中的46.4%和24.1%。然而,包括PMOA,MMOX,NIRK,NIR和NORZ的功能基因的相对转录物全部小于1%,特别是在O2的脱氮中涉及的官能基因,可能是由于大多数脱氮剂存在休眠甚至不可行。这些发现表明,最佳O2浓度应用于优化AME-D系统中有氧甲醇萎缩剂的活性和功能基因表达。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号