首页> 外文学位 >Gene Expression by Microbial Communities in Response to Soil Wet-Up: Microbial Resuscitation Strategies, Nitrifier Response Dynamics, and Nitrous Oxide Pulses.
【24h】

Gene Expression by Microbial Communities in Response to Soil Wet-Up: Microbial Resuscitation Strategies, Nitrifier Response Dynamics, and Nitrous Oxide Pulses.

机译:微生物对土壤湿润的响应中的基因表达:微生物复苏策略,硝化剂响应动力学和一氧化二氮脉冲。

获取原文
获取原文并翻译 | 示例

摘要

In this dissertation I use gene expression by indigenous soil microbial communities to better understand microbial resuscitation, the biogeochemical process of nitrification, and the consequent ramifications to global nitrous oxide emissions. The first rainfall following a long dry period in arid and semi-arid ecosystems causes a large, abrupt change in water potential that can be both a severe physiological stress and a punctuated stimulus for the reawakening of soil microbial communities rendered inactive by low-water conditions. Using two California annual grassland soils collected following a typically dry Mediterranean summer, I simulated a wet-up comparable to the season's first rainfall. I extracted nucleic acids and monitored soil variables before and over a logarithmic time scale from 15 minutes through 72 hours after water addition. I looked at this experiment through three different lenses to address pressing questions in microbial ecology, soil nutrient cycling, and trace gas biogeochemistry.;To assess microbial resuscitation strategies to the wet-up event, I applied transformed RNA to a high-density (16S rRNA) microarray (PhyloChip). I identified three response strategies, rapid (within 1 hour of wet-up), intermediate (between 3 and 24 hours following wet-up), and delayed (24 to 72 hours post wet-up) and note that the taxa comprising these groups cluster phylogenetically and are relatively consistent between the two soils analyzed.;I then addressed the relationship between microbial functional gene transcription and activity. I followed the transcriptional response of functional genes in three groups of nitrifiers; ammonia-oxidizing bacteria, ammonia-oxidizing archaea, and nitrite-oxidizing bacteria of Nitrobacter spp. By comparing transcript abundances with soil ammonium and nitrate pools over the course of wet-up, I found strong correlations between the soil ammonium pool and functional gene transcripts of ammonia-oxidizing bacteria ( amoA); induction of amoA continued until the rate of ammonia oxidation was greater than the resupply of ammonium, suggesting that transcription serves as a control point for ammonia oxidation in soil. I again measured similar time to response in both soils, this time with microorganisms grouped by metabolic function, with ammonia-oxidizing bacteria responding first. In addition, I again discovered that microorganisms traditionally thought to be slow-growing are capable of fast response, with transcriptional response detectable within 9 hours for the slowest group, ammonia-oxidizing archaea.;Finally, I related the lag in response of nitrite-oxidizers relative to ammonia-oxidizing bacteria to a significant nitrous oxide pulse and evaluated the implications of this decoupling to global nitrous oxide emissions. I reviewed the literature in light of this observation and discovered that increases in ammonia oxidation could explain the variability in and pulsed-behavior of nitrous oxide emissions reported from unsaturated soils.
机译:在这篇论文中,我使用本地土壤微生物群落的基因表达来更好地理解微生物复苏,硝化作用的生物地球化学过程,以及随之而来的对全球一氧化二氮排放的影响。干旱和半干旱的生态系统经过长时间干旱后的第一场降雨导致水势发生巨大的突然变化,这既可能是严重的生理压力,也可能是因低水条件而变得不活跃的土壤微生物群落重新苏醒的点滴刺激。 。我使用了典型的地中海夏季之后收集的加利福尼亚州的两种年度草原土壤,模拟了与该季节的第一场降雨相当的湿地。在提取水之前和之后的15分钟到72小时的对数时间范围内,我提取了核酸并监测了土壤变量。我通过三种不同的视角审视了该实验,以解决微生物生态学,土壤养分循环和微量气体生物地球化学中的紧迫问题。;为了评估针对潮湿事件的微生物复苏策略,我将转化的RNA应用于高密度(16S rRNA)芯片(PhyloChip)。我确定了三种响应策略:快速(润湿1小时以内),中间(润湿3到24小时之间)和延迟(润湿24到72小时之后),并注意到包括这些组的类群聚类系统发生聚类和分析的两种土壤之间是相对一致的。我然后解决了微生物功能基因转录与活性之间的关系。我跟踪了三组硝化器中功能基因的转录反应。硝化细菌的氨氧化细菌,氨氧化古细菌和亚硝酸盐氧化细菌。通过比较湿润过程中与土壤铵盐和硝酸盐库的转录本丰度,我发现土壤铵盐库与氨氧化细菌(amoA)的功能基因转录本之间存在很强的相关性。持续诱导amoA,直到氨氧化的速率大于铵的再供应,这表明转录可作为土壤中氨氧化的控制点。我再次在两种土壤中测量了相似的响应时间,这次是按代谢功能分组的微生物,其中氨氧化细菌首先响应。此外,我再次发现传统上认为生长缓慢的微生物能够快速反应,最慢的一组氨氧化古细菌可在9小时内检测到转录反应。最后,我将亚硝酸盐-氧化剂相对于氨氧化细菌产生明显的一氧化二氮脉冲,并评估了这种解耦对全球一氧化二氮排放量的影响。我根据这一观察结果回顾了文献,发现氨氧化的增加可以解释非饱和土壤中一氧化二氮排放量的变化和脉冲行为。

著录项

  • 作者

    Placella, Sarah Anne.;

  • 作者单位

    University of California, Berkeley.;

  • 授予单位 University of California, Berkeley.;
  • 学科 Soil sciences.;Ecology.;Microbiology.
  • 学位 Ph.D.
  • 年度 2011
  • 页码 74 p.
  • 总页数 74
  • 原文格式 PDF
  • 正文语种 eng
  • 中图分类
  • 关键词

  • 入库时间 2022-08-17 11:44:46

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号