首页> 外文期刊>Electrochimica Acta >Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability
【24h】

Influence of morphology and crystalline structure of TiO2 nanotubes on their electrochemical properties and apatite-forming ability

机译:TiO2纳米管形态和晶体结构对其电化学性能和磷灰石成矿能力的影响

获取原文
获取原文并翻译 | 示例
           

摘要

To study the synergetic influence of TiO2 nanotubes (NTs) morphology and crystalline structure on their electrochemical performances and apatite-forming ability, various sizes of nanotubes were synthesized via anodic oxidation of Ti and then annealed at different temperatures. XRD analysis and SEM observations confirmed that as-anodized amorphous nanotubes crystallize into anatase phase when annealed at 450 degrees C and into a mixture of anatase and rutile when annealed at 550 degrees C, without significant morphological modifications. Corrosion resistance was assessed by Open Circuit Potential measurements (OCP) and by potentiodynamic polarization curves while apatite-forming ability was evaluated by measuring the amount of Hydroxyapatite (HAp) precipitated on samples surfaces when soaked in Simulated Body Fluid (SBF) solution. Experiments confirmed that anodized titanium possesses much better corrosion resistance and bioactivity than flat Ti substrate and that annealed nanotubes are more suitable for biomedical applications than amorphous ones. Additionally, this study highlights paradoxical features such as plain anatase structure showed high bioactivity, but a mixed structure was preferable because of its synergistically better chemical stability and mechanical properties. Longer nanotubes had high corrosion resistance, but their apatite-forming ability after 14 days was poor; shorter nanotubes were less corrosion resistant, but induced thicker layer of HAp when immersed in SBF. Finally, the best compromise for implants surfaces was discussed regarding thermal, mechanical, electrochemical, chemical and bioactive properties. (C) 2017 Elsevier Ltd. All rights reserved.
机译:为了研究TiO2纳米管(NTS)形态和结晶结构对其电化学性能和磷灰石形成能力的协同影响,通过Ti的阳极氧化合成了各种含量的纳米管,然后在不同温度下退火。 XRD分析和SEM观察结果证实,当在450℃下退火并在550℃退火时,当阳极氧化无定形纳米粗纳米,并进入锐钛矿和金红石的混合物,而无明显的形态学修饰。通过开路电位测量(OCP)和电位动力学偏振曲线评估耐腐蚀性,而通过测量在模拟体液(SBF)溶液中沉淀的样品表面上沉淀的羟基磷灰石(HAP)的量来评估磷灰石形成能力。实验证实,阳极氧化钛具有比扁平Ti衬底更好的耐腐蚀性和生物活性,并且退火的纳米管比无定形样品更适合于生物医学应用。另外,该研究突出了矛盾的特征,例如普通锐钛矿结构表现出高的生物活性,但由于其协同性地更好的化学稳定性和机械性能,优选混合结构。较长的纳米管具有高耐腐蚀性,但其14天后的磷灰石形成能力差;较短的纳米管耐腐蚀性较小,但浸入SBF时诱导较厚的Hap层。最后,讨论了植入物表面的最佳折衷,关于热,机械,电化学,化学和生物活性性能。 (c)2017 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号