...
首页> 外文期刊>Electrochimica Acta >Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature over structural and electrochemical properties
【24h】

Reactive template synthesis of Li1.2Mn0.54Ni0.13Co0.13O2 nanorod cathode for Li-ion batteries: Influence of temperature over structural and electrochemical properties

机译:Li1.2Mn0.54Ni0.13Co0.13O2纳米棒对锂离子电池的反应模板合成:温度对结构和电化学性能的影响

获取原文
获取原文并翻译 | 示例

摘要

Common preparation methods of manganese-based Li-rich layered oxides include co-precipitation, combustion, spray pyrolysis, and molten salt synthesis. Herein, we present a facile new reactivetemplating route to prepare manganese-based lithium-rich Li1.2Mn0.54Ni0.13Co0.13O2 using beta-MnO2 nanorod, which plays a dual role as reactive template as well as Mn-source. Rietveld refinement and electron diffraction patterns confirm the formation of phase pure, highly crystalline Li1.2Mn0.54Ni0.13Co0.13O2 with two integrated layered components of 0.5(Li2MnO3).(0.5)(LiMn1/3Ni1/3Co1/3O2). Electron microscopy studies reveal the formation of anisotropic rod-like crystals of 0.8-1.0 mm in length and similar to 200 nm in thickness. The Li1.2Mn0.54Ni0.13Co0.13O2 nanorod as cathode for Li-ion battery, delivers an impressive reversible capacity of 223 mAh.g(-1) at 0.1C rate after 150 cycles and 161 mAh.g(-1) at 1 C rate after 300 cycles. Rapid structural transition from layered to spinel-like phase at high temperature (55 degrees C) leads to gradual decay in discharge capacity upon cycling, whereas low Li-ion diffusivity, cell resistance, and high viscosity hampers the performance at low temperature (5 degrees C). Impedance spectroscopy along with (dis) charge differential plots corroborate that activation of Li2MnO3 and Li-ion de(intercalation) into the MnO2 phase is very facile at high temperature (55 degrees C), which leads to high specific capacity, high coulombic efficiency, and high-power capability. (C) 2019 Elsevier Ltd. All rights reserved.
机译:锰基富富氧化锰的常用方法包括共析出,燃烧,喷雾热解和熔融合成。在此,我们介绍了使用β-mnO2纳米棒制备锰基富含锰的锂的Li1.2Mn0.54Ni0.13Co0.13O2的途径,该纳米棒作为反应模板以及MN源代起双重作用。 RIETVELD改进和电子衍射图案证实了相纯的高度结晶LI1.2MN0.54NI0.13CO0.13O2的形成,具有0.5(LI2MNO3)的两种综合分层组分。(0.5)(LIMN1 / 3NI1 / 3CO1 / 3O2)。电子显微镜研究揭示了各向异性棒状晶体的长度为0.8-1.0mm,厚度为200nm。 Li1.2mn0.54Ni0.13Co0.13O2纳米棒作为锂离子电池的阴极,在150次循环和161mAh.g(-1)之后,在0.1C速率下令人印象深刻的可逆容量为0.1C速度,161 Mah.g(-1) 3次循环后1 C速率。在高温(55摄氏度)下从层状到尖晶石相位的快速结构转变导致循环后放电容量的逐渐衰减,而低离子扩散性,电池抗性和高粘度在低温下的性能(5度C)。阻抗光谱与(DIS)电荷差异曲线赋予Li2MNO3和Li-Ion De(插入)的激活在高温(55℃)的MNO2相中非常容易,这导致高特定容量,高库仑效率,和高功率能力。 (c)2019 Elsevier Ltd.保留所有权利。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
获取原文

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号